Advertisements
Advertisements
Question
For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.
Solution
Given: bYX = 0.4, bXY = 0.9,
var(x) = 9; var(y) =?
r = `+-sqrt("b"_"YX"."b"_"XY")`
= `+-sqrt(0.4 xx 0.9)`
= `+-sqrt0.36`
r = 0.6
∵ `"b"_"YX" - "b"_"XY" > 0`
var(x) = 9
`sigma_"X" = sqrt("var(x)")`
= `sqrt9 = 3`
Now, `"b"_"YX" = "r" xx sigma_"Y"/sigma_"X"`
∴ `0.4 = 0.6 xx sigma_"Y"/3`
∴ `0.4 = 0.2 xx sigma_"Y"`
∴ `sigma_"Y" = 0.4/0.2 = 2`
var(y) = `sigma_"y"^2`
= 22 = 4
∴ `sigma^2` = 4
∴ The value of variance of Y is 4.
RELATED QUESTIONS
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of Y for X = 50.
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of X for Y = 25.
Bring out the inconsistency in the following:
bYX = 1.9 and bXY = - 0.25
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
Estimate the likely sales for a proposed advertisement expenditure of ₹ 10 crores.
From the two regression equations, find r, `bar x and bar y`. 4y = 9x + 15 and 25x = 4y + 17
The equations of two regression lines are
2x + 3y − 6 = 0
and 3x + 2y − 12 = 0 Find
- Correlation coefficient
- `sigma_"X"/sigma_"Y"`
The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.
Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.
For certain X and Y series, which are correlated the two lines of regression are 10y = 3x + 170 and 5x + 70 = 6y. Find the correlation coefficient between them. Find the mean values of X and Y.
The two regression lines between height (X) in inches and weight (Y) in kgs of girls are,
4y − 15x + 500 = 0
and 20x − 3y − 900 = 0
Find the mean height and weight of the group. Also, estimate the weight of a girl whose height is 70 inches.
Find the line of regression of X on Y for the following data:
n = 8, `sum(x_i - bar x)^2 = 36, sum(y_i - bar y)^2 = 44, sum(x_i - bar x)(y_i - bar y) = 24`
Choose the correct alternative:
If the regression equation X on Y is 3x + 2y = 26, then bxy equal to
Choose the correct alternative:
bxy and byx are ______
Choose the correct alternative:
If r = 0.5, σx = 3, `σ_"y"^2` = 16, then byx = ______
State whether the following statement is True or False:
Corr(x, x) = 0
State whether the following statement is True or False:
Regression coefficient of x on y is the slope of regression line of x on y
If the sign of the correlation coefficient is negative, then the sign of the slope of the respective regression line is ______
Arithmetic mean of positive values of regression coefficients is greater than or equal to ______
byx is the ______ of regression line of y on x
The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Find the value of the correlation coefficient `("Given" sqrt(0.933) = 0.9667)`
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
Production (X) |
Demand (Y) |
|
Mean | 85 | 90 |
Variance | 25 | 36 |
Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.
If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y)
bxy . byx = ______.
|bxy + byz| ≥ ______.