हिंदी

For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.

योग

उत्तर

Given: bYX = 0.4, bXY = 0.9,

var(x) = 9; var(y) =?

r = `+-sqrt("b"_"YX"."b"_"XY")`

= `+-sqrt(0.4 xx 0.9)`

= `+-sqrt0.36`

r = 0.6

∵ `"b"_"YX" - "b"_"XY" > 0`

var(x) = 9

`sigma_"X" = sqrt("var(x)")`

= `sqrt9 = 3`

Now, `"b"_"YX" = "r" xx sigma_"Y"/sigma_"X"`

∴ `0.4 = 0.6 xx sigma_"Y"/3`

∴ `0.4 = 0.2 xx sigma_"Y"`

∴ `sigma_"Y" = 0.4/0.2 = 2`

var(y) = `sigma_"y"^2`

= 22 = 4

∴ `sigma^2` = 4

∴  The value of variance of Y is 4.

shaalaa.com
Properties of Regression Coefficients
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Linear Regression - Exercise 3.3 [पृष्ठ ५०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Linear Regression
Exercise 3.3 | Q 4 | पृष्ठ ५०

संबंधित प्रश्न

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of X for Y = 25.


Bring out the inconsistency in the following:

bYX + bXY = 1.30 and r = 0.75 


Bring out the inconsistency in the following:

bYX = bXY = 1.50 and r = - 0.9 


Bring out the inconsistency in the following:

bYX = 1.9 and bXY = - 0.25


Bring out the inconsistency in the following:

bYX = 2.6 and bXY = `1/2.6`


For 50 students of a class, the regression equation of marks in statistics (X) on the marks in accountancy (Y) is 3y − 5x + 180 = 0.  The variance of marks in statistics is `(9/16)^"th"` of the variance of marks in accountancy. Find the correlation coefficient between marks in two subjects.


The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.


The two regression lines between height (X) in inches and weight (Y) in kgs of girls are,
4y − 15x + 500 = 0
and 20x − 3y − 900 = 0
Find the mean height and weight of the group. Also, estimate the weight of a girl whose height is 70 inches.


Choose the correct alternative:

If the regression equation X on Y is 3x + 2y = 26, then bxy equal to 


Choose the correct alternative:

If byx < 0 and bxy < 0, then r is ______


Choose the correct alternative:

If r = 0.5, σx = 3, σy2 = 16, then bxy = ______


The following data is not consistent: byx + bxy =1.3 and r = 0.75


Corr(x, x) = 1


|bxy + byx| ≥ ______


Arithmetic mean of positive values of regression coefficients is greater than or equal to ______


If u = `(x - 20)/5` and v = `(y - 30)/4`, then byx = ______


The geometric mean of negative regression coefficients is ______


The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Find the value of the correlation coefficient `("Given"  sqrt(0.933) = 0.9667)`


If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y) 


x y `x - barx` `y - bary` `(x - barx)(y - bary)` `(x - barx)^2` `(y - bary)^2`
1 5 – 2 – 4 8 4 16
2 7 – 1 – 2 `square` 1 4
3 9 0 0 0 0 0
4 11 1 2 2 4 4
5 13 2 4 8 1 16
Total = 15 Total = 45 Total = 0 Total = 0 Total = `square` Total = 10 Total = 40

Mean of x = `barx = square`

Mean of y = `bary = square`

bxy = `square/square`

byx = `square/square`

Regression equation of x on y is `(x - barx) = "b"_(xy)  (y - bary)`

∴ Regression equation x on y is `square`

Regression equation of y on x is `(y - bary) = "b"_(yx)  (x - barx)`

∴ Regression equation of y on x is `square`


x y xy x2 y2
6 9 54 36 81
2 11 22 4 121
10 5 50 100 25
4 8 32 16 64
8 7 `square` 64 49
Total = 30 Total = 40 Total = `square` Total = 220 Total = `square`

bxy = `square/square`

byx = `square/square`

∴ Regression equation of x on y is `square`

∴ Regression equation of y on x is `square`


bxy . byx = ______.


If byx > 1 then bxy is _______.


For a bivariate data:

`sum(x - overlinex)^2` = 1200, `sum(y - overliney)^2` = 300, `sum(x - overlinex)(y - overliney)` = – 250

Find: 

  1. byx
  2. bxy
  3. Correlation coefficient between x and y.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×