Advertisements
Advertisements
प्रश्न
For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.
उत्तर
Given: bYX = 0.4, bXY = 0.9,
var(x) = 9; var(y) =?
r = `+-sqrt("b"_"YX"."b"_"XY")`
= `+-sqrt(0.4 xx 0.9)`
= `+-sqrt0.36`
r = 0.6
∵ `"b"_"YX" - "b"_"XY" > 0`
var(x) = 9
`sigma_"X" = sqrt("var(x)")`
= `sqrt9 = 3`
Now, `"b"_"YX" = "r" xx sigma_"Y"/sigma_"X"`
∴ `0.4 = 0.6 xx sigma_"Y"/3`
∴ `0.4 = 0.2 xx sigma_"Y"`
∴ `sigma_"Y" = 0.4/0.2 = 2`
var(y) = `sigma_"y"^2`
= 22 = 4
∴ `sigma^2` = 4
∴ The value of variance of Y is 4.
संबंधित प्रश्न
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of X for Y = 25.
Bring out the inconsistency in the following:
bYX + bXY = 1.30 and r = 0.75
Bring out the inconsistency in the following:
bYX = bXY = 1.50 and r = - 0.9
Bring out the inconsistency in the following:
bYX = 1.9 and bXY = - 0.25
Bring out the inconsistency in the following:
bYX = 2.6 and bXY = `1/2.6`
For 50 students of a class, the regression equation of marks in statistics (X) on the marks in accountancy (Y) is 3y − 5x + 180 = 0. The variance of marks in statistics is `(9/16)^"th"` of the variance of marks in accountancy. Find the correlation coefficient between marks in two subjects.
The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.
The two regression lines between height (X) in inches and weight (Y) in kgs of girls are,
4y − 15x + 500 = 0
and 20x − 3y − 900 = 0
Find the mean height and weight of the group. Also, estimate the weight of a girl whose height is 70 inches.
Choose the correct alternative:
If the regression equation X on Y is 3x + 2y = 26, then bxy equal to
Choose the correct alternative:
If byx < 0 and bxy < 0, then r is ______
Choose the correct alternative:
If r = 0.5, σx = 3, σy2 = 16, then bxy = ______
The following data is not consistent: byx + bxy =1.3 and r = 0.75
Corr(x, x) = 1
|bxy + byx| ≥ ______
Arithmetic mean of positive values of regression coefficients is greater than or equal to ______
If u = `(x - 20)/5` and v = `(y - 30)/4`, then byx = ______
The geometric mean of negative regression coefficients is ______
The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Find the value of the correlation coefficient `("Given" sqrt(0.933) = 0.9667)`
If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y)
x | y | `x - barx` | `y - bary` | `(x - barx)(y - bary)` | `(x - barx)^2` | `(y - bary)^2` |
1 | 5 | – 2 | – 4 | 8 | 4 | 16 |
2 | 7 | – 1 | – 2 | `square` | 1 | 4 |
3 | 9 | 0 | 0 | 0 | 0 | 0 |
4 | 11 | 1 | 2 | 2 | 4 | 4 |
5 | 13 | 2 | 4 | 8 | 1 | 16 |
Total = 15 | Total = 45 | Total = 0 | Total = 0 | Total = `square` | Total = 10 | Total = 40 |
Mean of x = `barx = square`
Mean of y = `bary = square`
bxy = `square/square`
byx = `square/square`
Regression equation of x on y is `(x - barx) = "b"_(xy) (y - bary)`
∴ Regression equation x on y is `square`
Regression equation of y on x is `(y - bary) = "b"_(yx) (x - barx)`
∴ Regression equation of y on x is `square`
x | y | xy | x2 | y2 |
6 | 9 | 54 | 36 | 81 |
2 | 11 | 22 | 4 | 121 |
10 | 5 | 50 | 100 | 25 |
4 | 8 | 32 | 16 | 64 |
8 | 7 | `square` | 64 | 49 |
Total = 30 | Total = 40 | Total = `square` | Total = 220 | Total = `square` |
bxy = `square/square`
byx = `square/square`
∴ Regression equation of x on y is `square`
∴ Regression equation of y on x is `square`
bxy . byx = ______.
If byx > 1 then bxy is _______.
For a bivariate data:
`sum(x - overlinex)^2` = 1200, `sum(y - overliney)^2` = 300, `sum(x - overlinex)(y - overliney)` = – 250
Find:
- byx
- bxy
- Correlation coefficient between x and y.