हिंदी

The equations of two regression lines are2x + 3y − 6 = 0and 2x + 2y − 12 = 0 Find Correlation coefficient σXσY - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The equations of two regression lines are
2x + 3y − 6 = 0
and 3x + 2y − 12 = 0 Find 

  1. Correlation coefficient
  2. `sigma_"X"/sigma_"Y"`
योग

उत्तर

The given regression equations are
2x + 3y – 6 = 0 and 3x + 2y − 12 = 0

(i) 2x + 3y = 6

3y = – 2x + 6

`y = (– 2)/3x + 2`

`b_( yx)  = (-2)/3`

3x + 2y = 12

3x = – 2y = 12

`x = (-2)/3y + 4`

`b_(xy) = (-2)/3`

`b_( yx).b_(xy) = (-2)/3 xx (-2)/3 = 4/9 ∈ [0, 1]`

∴ Our assumption is correct.

∴ `r^2 = b_( yx).b_(xy)`

`r^2 = 4/9`

`r = ±2/3`

Since `b_( yx)` and `b_(xy)` are negative ∴ r =`(-2)/3`

(ii) `b_(xy) = (r . sigma_y)/sigma_x`

`(-2)/3 = (-2)/3 . sigma_x/sigma_y`

∴ `sigma_x/sigma_y = 1`

shaalaa.com
Properties of Regression Coefficients
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Linear Regression - Exercise 3.3 [पृष्ठ ५०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Linear Regression
Exercise 3.3 | Q 5 | पृष्ठ ५०

संबंधित प्रश्न

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of X for Y = 25.


Bring out the inconsistency in the following:

bYX + bXY = 1.30 and r = 0.75 


Bring out the inconsistency in the following:

bYX = bXY = 1.50 and r = - 0.9 


Bring out the inconsistency in the following:

bYX = 1.9 and bXY = - 0.25


Bring out the inconsistency in the following:

bYX = 2.6 and bXY = `1/2.6`


For a certain bivariate data

  X Y
Mean 25 20
S.D. 4 3

And r = 0.5. Estimate y when x = 10 and estimate x when y = 16


Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from respective means is 136 and 150. The sum of the product of deviations from respective means is 123. Obtain the equation of the line of regression of X on Y.


An inquiry of 50 families to study the relationship between expenditure on accommodation (₹ x) and expenditure on food and entertainment (₹ y) gave the following results: 

∑ x = 8500, ∑ y = 9600, σX = 60, σY = 20, r = 0.6

Estimate the expenditure on food and entertainment when expenditure on accommodation is Rs 200.


From the two regression equations, find r, `bar x and bar y`. 4y = 9x + 15 and 25x = 4y + 17


For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.


If the two regression lines for a bivariate data are 2x = y + 15 (x on y) and 4y = 3x + 25 (y on x), find

  1. `bar x`,
  2. `bar y`,
  3. bYX
  4. bXY
  5. r [Given `sqrt0.375` = 0.61]

For certain X and Y series, which are correlated the two lines of regression are 10y = 3x + 170 and 5x + 70 = 6y. Find the correlation coefficient between them. Find the mean values of X and Y.


Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation.  [Given `sqrt0.375` = 0.61]


Choose the correct alternative:

If for a bivariate data, bYX = – 1.2 and bXY = – 0.3, then r = ______


Choose the correct alternative:

If r = 0.5, σx = 3, `σ_"y"^2` = 16, then byx = ______


State whether the following statement is True or False:

If byx = 1.5 and bxy = `1/3` then r = `1/2`, the given data is consistent


State whether the following statement is True or False:

Corr(x, x) = 0


State whether the following statement is True or False:

Cov(x, x) = Variance of x


Given the following information about the production and demand of a commodity.
Obtain the two regression lines:

  ADVERTISEMENT (x)
(₹ in lakhs)
DEMAND (y)
(₹ in lakhs)
Mean 10 90
Variance 9 144

Coefficient of correlation between x and y is 0.8.
What should be the advertising budget if the company wants to attain the sales target of ₹ 150 lakhs?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×