हिंदी

Given the following information about the production and demand of a commodity. Obtain the two regression lines: ADVERTISEMENT (x)(₹ in lakhs) DEMAND (y)(₹ in lakhs) Mean 10 90 Variance 9 144 Coeffi - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Given the following information about the production and demand of a commodity.
Obtain the two regression lines:

  ADVERTISEMENT (x)
(₹ in lakhs)
DEMAND (y)
(₹ in lakhs)
Mean 10 90
Variance 9 144

Coefficient of correlation between x and y is 0.8.
What should be the advertising budget if the company wants to attain the sales target of ₹ 150 lakhs?

योग

उत्तर

Given, `bar(x)` = 10, `bar(y)` = 90, `sigma_x^2` = 9, `sigma_y^2` = 144, r = 0.8

∴ `sigma_x` = 3, `sigma_y` = 12

byx = `"r" sigma_y/sigma_x = 0.8 xx 12/3` = 0.8 × 4 = 3.2

bxy = `"r" sigma_x/sigma_y = 0.8 xx 3/12` = 0.8 × 0.25 = 0.2

The regression equation of Y on X is

`("Y" - bary) = "b"_(yx) ("X" - barx)`

∴ (Y – 90) = 3.2 (X – 10)

∴ Y – 90 = 3.2 X – 32

∴ Y = 3.2 X – 32 + 90

∴ Y = 3.2 X + 58    ......(i)

The regression equation of X on Y is

`("X" - barx) = "b"_(xy) ("Y" - bary)`

∴ (X – 10) = 0.2 (Y – 90)

∴ X – 10 = 0.2 Y – 18

∴ X = 0.2 Y – 18 + 10

∴ X = 0.2 Y – 8    ......(ii)

When the company wants to attain the sales target of ₹ 150 lakhs,

Put Y = 150 lakh in equation (ii)

∴ X = 0.2 × 150 – 8 = 30 – 8 = 22

∴ The advertising budget should be ₹ 22 lakhs if the company wants to attain the sales target of ₹ 150 lakhs.

shaalaa.com
Properties of Regression Coefficients
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.3: Linear Regression - Q.4

संबंधित प्रश्न

Bring out the inconsistency in the following:

bYX = bXY = 1.50 and r = - 0.9 


Bring out the inconsistency in the following:

bYX = 1.9 and bXY = - 0.25


For a certain bivariate data

  X Y
Mean 25 20
S.D. 4 3

And r = 0.5. Estimate y when x = 10 and estimate x when y = 16


An inquiry of 50 families to study the relationship between expenditure on accommodation (₹ x) and expenditure on food and entertainment (₹ y) gave the following results: 

∑ x = 8500, ∑ y = 9600, σX = 60, σY = 20, r = 0.6

Estimate the expenditure on food and entertainment when expenditure on accommodation is Rs 200.


For certain bivariate data the following information is available.

  X Y
Mean 13 17
S.D. 3 2

Correlation coefficient between x and y is 0.6. estimate x when y = 15 and estimate y when x = 10.


For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.


The equations of two regression lines are
2x + 3y − 6 = 0
and 3x + 2y − 12 = 0 Find 

  1. Correlation coefficient
  2. `sigma_"X"/sigma_"Y"`

For a bivariate data: `bar x = 53, bar y = 28,` bYX = - 1.5 and bXY = - 0.2. Estimate Y when X = 50.


If the two regression lines for a bivariate data are 2x = y + 15 (x on y) and 4y = 3x + 25 (y on x), find

  1. `bar x`,
  2. `bar y`,
  3. bYX
  4. bXY
  5. r [Given `sqrt0.375` = 0.61]

Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.


Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation.  [Given `sqrt0.375` = 0.61]


The two regression lines between height (X) in inches and weight (Y) in kgs of girls are,
4y − 15x + 500 = 0
and 20x − 3y − 900 = 0
Find the mean height and weight of the group. Also, estimate the weight of a girl whose height is 70 inches.


If bYX = − 0.6 and bXY = − 0.216, then find correlation coefficient between X and Y. Comment on it.


Choose the correct alternative:

If the regression equation X on Y is 3x + 2y = 26, then bxy equal to 


Choose the correct alternative:

If byx < 0 and bxy < 0, then r is ______


Choose the correct alternative:

If r = 0.5, σx = 3, `σ_"y"^2` = 16, then byx = ______


Choose the correct alternative:

If r = 0.5, σx = 3, σy2 = 16, then bxy = ______


The following data is not consistent: byx + bxy =1.3 and r = 0.75


Corr(x, x) = 1


State whether the following statement is True or False:

Cov(x, x) = Variance of x


If the sign of the correlation coefficient is negative, then the sign of the slope of the respective regression line is ______


The value of product moment correlation coefficient between x and x is ______


The geometric mean of negative regression coefficients is ______


If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y) 


x y `x - barx` `y - bary` `(x - barx)(y - bary)` `(x - barx)^2` `(y - bary)^2`
1 5 – 2 – 4 8 4 16
2 7 – 1 – 2 `square` 1 4
3 9 0 0 0 0 0
4 11 1 2 2 4 4
5 13 2 4 8 1 16
Total = 15 Total = 45 Total = 0 Total = 0 Total = `square` Total = 10 Total = 40

Mean of x = `barx = square`

Mean of y = `bary = square`

bxy = `square/square`

byx = `square/square`

Regression equation of x on y is `(x - barx) = "b"_(xy)  (y - bary)`

∴ Regression equation x on y is `square`

Regression equation of y on x is `(y - bary) = "b"_(yx)  (x - barx)`

∴ Regression equation of y on x is `square`


Mean of x = 25

Mean of y = 20

`sigma_x` = 4

`sigma_y` = 3

r = 0.5

byx = `square`

bxy = `square`

when x = 10,

`y - square = square (10 - square)`

∴ y = `square`


The regression equation of y on x is 2x – 5y + 60 = 0

Mean of x = 18

`2 square -  5 bary + 60` = 0

∴ `bary = square`

`sigma_x : sigma_y` = 3 : 2

∴ byx = `square/square`

∴ byx = `square/square`

∴ r = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×