मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Given the following information about the production and demand of a commodity. Obtain the two regression lines: ADVERTISEMENT (x)(₹ in lakhs) DEMAND (y)(₹ in lakhs) Mean 10 90 Variance 9 144 Coeffi - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Given the following information about the production and demand of a commodity.
Obtain the two regression lines:

  ADVERTISEMENT (x)
(₹ in lakhs)
DEMAND (y)
(₹ in lakhs)
Mean 10 90
Variance 9 144

Coefficient of correlation between x and y is 0.8.
What should be the advertising budget if the company wants to attain the sales target of ₹ 150 lakhs?

बेरीज

उत्तर

Given, `bar(x)` = 10, `bar(y)` = 90, `sigma_x^2` = 9, `sigma_y^2` = 144, r = 0.8

∴ `sigma_x` = 3, `sigma_y` = 12

byx = `"r" sigma_y/sigma_x = 0.8 xx 12/3` = 0.8 × 4 = 3.2

bxy = `"r" sigma_x/sigma_y = 0.8 xx 3/12` = 0.8 × 0.25 = 0.2

The regression equation of Y on X is

`("Y" - bary) = "b"_(yx) ("X" - barx)`

∴ (Y – 90) = 3.2 (X – 10)

∴ Y – 90 = 3.2 X – 32

∴ Y = 3.2 X – 32 + 90

∴ Y = 3.2 X + 58    ......(i)

The regression equation of X on Y is

`("X" - barx) = "b"_(xy) ("Y" - bary)`

∴ (X – 10) = 0.2 (Y – 90)

∴ X – 10 = 0.2 Y – 18

∴ X = 0.2 Y – 18 + 10

∴ X = 0.2 Y – 8    ......(ii)

When the company wants to attain the sales target of ₹ 150 lakhs,

Put Y = 150 lakh in equation (ii)

∴ X = 0.2 × 150 – 8 = 30 – 8 = 22

∴ The advertising budget should be ₹ 22 lakhs if the company wants to attain the sales target of ₹ 150 lakhs.

shaalaa.com
Properties of Regression Coefficients
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.3: Linear Regression - Q.4

संबंधित प्रश्‍न

You are given the following information about advertising expenditure and sales.

  Advertisement expenditure
(₹ in lakh) (X)
Sales (₹ in lakh) (Y)
Arithmetic Mean 10 90
Standard Mean 3 12

Correlation coefficient between X and Y is 0.8

  1. Obtain the two regression equations.
  2. What is the likely sales when the advertising budget is ₹ 15 lakh?
  3. What should be the advertising budget if the company wants to attain sales target of ₹ 120 lakh?

Bring out the inconsistency in the following:

bYX = 2.6 and bXY = `1/2.6`


The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)

  Sales Adv. Exp.
Mean 40 6
S.D. 10 1.5

Coefficient of correlation between sales and advertisement expenditure is 0.9.

Estimate the likely sales for a proposed advertisement expenditure of ₹ 10 crores.


The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)

  Sales Adv. Exp.
Mean 40 6
S.D. 10 1.5

Coefficient of correlation between sales and advertisement expenditure is 0.9.

What should be the advertisement expenditure if the firm proposes a sales target ₹ 60 crores?


In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:

Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information

  1. The mean values of X and Y.
  2. Correlation coefficient between X and Y.
  3. Standard deviation of Y.

The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.


For certain X and Y series, which are correlated the two lines of regression are 10y = 3x + 170 and 5x + 70 = 6y. Find the correlation coefficient between them. Find the mean values of X and Y.


Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation.  [Given `sqrt0.375` = 0.61]


The two regression lines between height (X) in inches and weight (Y) in kgs of girls are,
4y − 15x + 500 = 0
and 20x − 3y − 900 = 0
Find the mean height and weight of the group. Also, estimate the weight of a girl whose height is 70 inches.


The following results were obtained from records of age (X) and systolic blood pressure (Y) of a group of 10 men.

  X Y
Mean 50 140
Variance 150 165

and `sum (x_i - bar x)(y_i - bar y) = 1120`

Find the prediction of blood pressure of a man of age 40 years.


Choose the correct alternative:

If byx < 0 and bxy < 0, then r is ______


Choose the correct alternative:

|byx + bxy| ≥ ______


Choose the correct alternative:

bxy and byx are ______


Choose the correct alternative:

Both the regression coefficients cannot exceed 1


State whether the following statement is True or False: 

If bxy < 0 and byx < 0 then ‘r’ is > 0


The following data is not consistent: byx + bxy =1.3 and r = 0.75


State whether the following statement is True or False:

Regression coefficient of x on y is the slope of regression line of x on y


If u = `(x - 20)/5` and v = `(y - 30)/4`, then byx = ______


byx is the ______ of regression line of y on x


The equations of two lines of regression are 3x + 2y – 26 = 0 and 6x + y – 31 = 0. Find variance of x if variance of y is 36


Given the following information about the production and demand of a commodity.

Obtain the two regression lines:

  Production
(X)
Demand
(Y)
Mean 85 90
Variance 25 36

Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.


x y `x - barx` `y - bary` `(x - barx)(y - bary)` `(x - barx)^2` `(y - bary)^2`
1 5 – 2 – 4 8 4 16
2 7 – 1 – 2 `square` 1 4
3 9 0 0 0 0 0
4 11 1 2 2 4 4
5 13 2 4 8 1 16
Total = 15 Total = 45 Total = 0 Total = 0 Total = `square` Total = 10 Total = 40

Mean of x = `barx = square`

Mean of y = `bary = square`

bxy = `square/square`

byx = `square/square`

Regression equation of x on y is `(x - barx) = "b"_(xy)  (y - bary)`

∴ Regression equation x on y is `square`

Regression equation of y on x is `(y - bary) = "b"_(yx)  (x - barx)`

∴ Regression equation of y on x is `square`


Mean of x = 25

Mean of y = 20

`sigma_x` = 4

`sigma_y` = 3

r = 0.5

byx = `square`

bxy = `square`

when x = 10,

`y - square = square (10 - square)`

∴ y = `square`


The regression equation of y on x is 2x – 5y + 60 = 0

Mean of x = 18

`2 square -  5 bary + 60` = 0

∴ `bary = square`

`sigma_x : sigma_y` = 3 : 2

∴ byx = `square/square`

∴ byx = `square/square`

∴ r = `square`


x y xy x2 y2
6 9 54 36 81
2 11 22 4 121
10 5 50 100 25
4 8 32 16 64
8 7 `square` 64 49
Total = 30 Total = 40 Total = `square` Total = 220 Total = `square`

bxy = `square/square`

byx = `square/square`

∴ Regression equation of x on y is `square`

∴ Regression equation of y on x is `square`


bxy . byx = ______.


For a bivariate data:

`sum(x - overlinex)^2` = 1200, `sum(y - overliney)^2` = 300, `sum(x - overlinex)(y - overliney)` = – 250

Find: 

  1. byx
  2. bxy
  3. Correlation coefficient between x and y.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×