Advertisements
Advertisements
प्रश्न
x | y | xy | x2 | y2 |
6 | 9 | 54 | 36 | 81 |
2 | 11 | 22 | 4 | 121 |
10 | 5 | 50 | 100 | 25 |
4 | 8 | 32 | 16 | 64 |
8 | 7 | `square` | 64 | 49 |
Total = 30 | Total = 40 | Total = `square` | Total = 220 | Total = `square` |
bxy = `square/square`
byx = `square/square`
∴ Regression equation of x on y is `square`
∴ Regression equation of y on x is `square`
उत्तर
x | y | xy | x2 | y2 |
6 | 9 | 54 | 36 | 81 |
2 | 11 | 22 | 4 | 121 |
10 | 5 | 50 | 100 | 25 |
4 | 8 | 32 | 16 | 64 |
8 | 7 | 56 | 64 | 49 |
Total = 30 | Total = 40 | Total = 214 | Total = 220 | Total = 340 |
From the table, we have
n = 5, ∑x = 30, ∑y = 40, ∑xy = 214, ∑x2 = 220, ∑y2 = 340
`barx = (sumx_"i")/"n" = 30/5` = 6
`bary = (sumy_"i")/"n" = 40/5` = 8
bxy = `(sumxy - "n" bar(x) bar(y))/(sumy^2 - "n" bary^2)`
= `(214 - 5 xx 6 xx 8)/(340 - 5(8)^2`
= `(214 - 240)/(340 - 320)`
= `(-26)/20`
bxy = `(-13)/10`
byx = `(sumxy - "n" bar(x) bar(y))/(sumx^2 - "n" barx^2)`
= `(214 - 5 xx 6 xx 8)/(220 - 5(6)^2`
= `(214 - 240)/(220 - 180)`
= `(-26)/40`
byx = `(-13)/20`
∴ Regression equation of x on y is x = – 1.3y + 16.4
∴ Regression equation of y on x is y = – 0.65x + 11.9
APPEARS IN
संबंधित प्रश्न
Bring out the inconsistency in the following:
bYX = bXY = 1.50 and r = - 0.9
Bring out the inconsistency in the following:
bYX = 1.9 and bXY = - 0.25
For certain bivariate data the following information is available.
X | Y | |
Mean | 13 | 17 |
S.D. | 3 | 2 |
Correlation coefficient between x and y is 0.6. estimate x when y = 15 and estimate y when x = 10.
Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.
Find the line of regression of X on Y for the following data:
n = 8, `sum(x_i - bar x)^2 = 36, sum(y_i - bar y)^2 = 44, sum(x_i - bar x)(y_i - bar y) = 24`
Choose the correct alternative:
If for a bivariate data, bYX = – 1.2 and bXY = – 0.3, then r = ______
Choose the correct alternative:
If r = 0.5, σx = 3, σy2 = 16, then bxy = ______
State whether the following statement is True or False:
If bxy < 0 and byx < 0 then ‘r’ is > 0
State whether the following statement is True or False:
If u = x – a and v = y – b then bxy = buv
State whether the following statement is True or False:
Cov(x, x) = Variance of x
If the sign of the correlation coefficient is negative, then the sign of the slope of the respective regression line is ______
Arithmetic mean of positive values of regression coefficients is greater than or equal to ______
byx is the ______ of regression line of y on x
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
Production (X) |
Demand (Y) |
|
Mean | 85 | 90 |
Variance | 25 | 36 |
Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.
For a certain bivariate data of a group of 10 students, the following information gives the internal marks obtained in English (X) and Hindi (Y):
X | Y | |
Mean | 13 | 17 |
Standard Deviation | 3 | 2 |
If r = 0.6, Estimate x when y = 16 and y when x = 10
x | y | `x - barx` | `y - bary` | `(x - barx)(y - bary)` | `(x - barx)^2` | `(y - bary)^2` |
1 | 5 | – 2 | – 4 | 8 | 4 | 16 |
2 | 7 | – 1 | – 2 | `square` | 1 | 4 |
3 | 9 | 0 | 0 | 0 | 0 | 0 |
4 | 11 | 1 | 2 | 2 | 4 | 4 |
5 | 13 | 2 | 4 | 8 | 1 | 16 |
Total = 15 | Total = 45 | Total = 0 | Total = 0 | Total = `square` | Total = 10 | Total = 40 |
Mean of x = `barx = square`
Mean of y = `bary = square`
bxy = `square/square`
byx = `square/square`
Regression equation of x on y is `(x - barx) = "b"_(xy) (y - bary)`
∴ Regression equation x on y is `square`
Regression equation of y on x is `(y - bary) = "b"_(yx) (x - barx)`
∴ Regression equation of y on x is `square`
The regression equation of y on x is 2x – 5y + 60 = 0
Mean of x = 18
`2 square - 5 bary + 60` = 0
∴ `bary = square`
`sigma_x : sigma_y` = 3 : 2
∴ byx = `square/square`
∴ byx = `square/square`
∴ r = `square`
|bxy + byz| ≥ ______.