मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find x¯,y¯ and r. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.

बेरीज

उत्तर

Given, two lines of regression are

10x + 3y – 62 = 0

i.e., 10x + 3y = 62   …(i)

and 6x + 5y – 50 = 0

i.e., 6x + 5y = 50 …(ii)

By (i) × 5 - (ii) × 3, we get

50x + 15y = 310
18x + 15y = 150
-      -           -    
32x    = 160
∴ x = 5

Substituting x = 5 in (i) we get,

10(5) + 3y = 62

∴ 50 + 3y = 62

∴ 3y = 62 - 50 = 12

∴ y = 4

Since the point of intersection of two regression lines is `(bar x, bar y)`,

`bar x = 5  and bar y = 4`

Now, 

Let 10x + 3y - 62 = 0 be the regression equation of X on Y.

∴ The equation becomes 10x = –3y + 62

i.e., 10X = –3Y + 62

i.e., X = `- 3/10 "Y" + 62/10`

Comparing it with X = bXY Y + a, we get

∴ `"b"_"XY" = - 3/10`

Now, other equation 6x + 5y – 50 = 0 be the regression equation of Y on X.

∴ The equation becomes 5y = – 6x + 50

i.e., 5Y = – 6X + 50

i.e., Y = `- 6/5 "x" + 50/5`

Comparing it with Y = bYX X + a', we get

`"b"_"YX" = - 6/5`

Now, `"b"_"YX" * "b"_"XY" = (- 3/10)(- 6/5) = 9/25`

i.e., bXY . bYX < 1

∴ Assumption of regression equations is true.

∴ r = `+-sqrt("b"_"XY" * "b"_"YX") = +-sqrt(9/25) = +- 3/5` 

Since bYX and bXY both are negative,

r is negative.

∴ r = `- 3/5 = - 0.6`

shaalaa.com
Properties of Regression Coefficients
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Linear Regression - Exercise 3.3 [पृष्ठ ५०]

APPEARS IN

संबंधित प्रश्‍न

Bring out the inconsistency in the following:

bYX = bXY = 1.50 and r = - 0.9 


Bring out the inconsistency in the following:

bYX = 2.6 and bXY = `1/2.6`


An inquiry of 50 families to study the relationship between expenditure on accommodation (₹ x) and expenditure on food and entertainment (₹ y) gave the following results: 

∑ x = 8500, ∑ y = 9600, σX = 60, σY = 20, r = 0.6

Estimate the expenditure on food and entertainment when expenditure on accommodation is Rs 200.


For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.


The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.


In a partially destroyed record, the following data are available: variance of X = 25, Regression equation of Y on X is 5y − x = 22 and regression equation of X on Y is 64x − 45y = 22 Find

  1. Mean values of X and Y
  2. Standard deviation of Y
  3. Coefficient of correlation between X and Y.

The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find `bar x, bar y`, r.


For certain X and Y series, which are correlated the two lines of regression are 10y = 3x + 170 and 5x + 70 = 6y. Find the correlation coefficient between them. Find the mean values of X and Y.


Choose the correct alternative:

Find the value of the covariance between X and Y, if the regression coefficient of Y on X is 3.75 and σx = 2, σy = 8


|bxy + byx| ≥ ______


If the sign of the correlation coefficient is negative, then the sign of the slope of the respective regression line is ______


The geometric mean of negative regression coefficients is ______


byx is the ______ of regression line of y on x


For a certain bivariate data of a group of 10 students, the following information gives the internal marks obtained in English (X) and Hindi (Y):

  X Y
Mean 13 17
Standard Deviation 3 2

If r = 0.6, Estimate x when y = 16 and y when x = 10


x y `x - barx` `y - bary` `(x - barx)(y - bary)` `(x - barx)^2` `(y - bary)^2`
1 5 – 2 – 4 8 4 16
2 7 – 1 – 2 `square` 1 4
3 9 0 0 0 0 0
4 11 1 2 2 4 4
5 13 2 4 8 1 16
Total = 15 Total = 45 Total = 0 Total = 0 Total = `square` Total = 10 Total = 40

Mean of x = `barx = square`

Mean of y = `bary = square`

bxy = `square/square`

byx = `square/square`

Regression equation of x on y is `(x - barx) = "b"_(xy)  (y - bary)`

∴ Regression equation x on y is `square`

Regression equation of y on x is `(y - bary) = "b"_(yx)  (x - barx)`

∴ Regression equation of y on x is `square`


Mean of x = 53

Mean of y = 28

Regression coefficient of y on x = – 1.2

Regression coefficient of x on y = – 0.3

a. r = `square`

b. When x = 50,

`y - square = square (50 - square)`

∴ y = `square`

c. When y = 25,

`x - square = square (25 - square)`

∴ x = `square`


The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 women.

  x y
Mean 53 142
Variance 130 165

`sum(x_i - barx)(y_i - bary)` = 1170


For a bivariate data:

`sum(x - overlinex)^2` = 1200, `sum(y - overliney)^2` = 300, `sum(x - overlinex)(y - overliney)` = – 250

Find: 

  1. byx
  2. bxy
  3. Correlation coefficient between x and y.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×