मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

For certain X and Y series, which are correlated the two lines of regression are 10y = 3x + 170 and 5x + 70 = 6y. Find the correlation coefficient between them. Find the mean values of X and Y. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For certain X and Y series, which are correlated the two lines of regression are 10y = 3x + 170 and 5x + 70 = 6y. Find the correlation coefficient between them. Find the mean values of X and Y.

बेरीज

उत्तर

Let 10y = 3x + 170 be the regression equation of Y on X.

∴ The equation becomes 10y = 3x + 170

i.e., Y = `3/10 "X" + 170/10`

Comparing it with Y = bYX X + a, we get

`"b"_"YX" = 3/10`

Now other equation 5x + 70 = 6y be the regression equation of X on Y.

∴ The equation becomes 5x = 6y – 70

i.e., X = `6/5 "Y" - 70/5`

Comparing it with X = bXY Y + a', we get

`"b"_"XY" = 6/5`

∴ r = `+-sqrt("b"_"XY" * "b"_"YX") = +-sqrt(6/5 xx 3/10) = +- sqrt(9/25) +- 3/5`

Since bYX and bXY both are positive,

r is positive.

∴ r = `3/5` = 0.6

Now, two correlated lines of regression are

10y = 3x + 170

i.e., - 3x + 10y = 170   …(i)

and 5x + 70 = 6y

i.e., 5x - 6y = –70       …(ii)

By (i) × 5 + (ii) × 3, we get

- 15x + 50y = 850
+ 15x - 18y = - 210 
  32y = 640

∴ y = 20

Substituting y = 20 in equation (i), we get

- 3x +10(20) = 170

∴ - 3x + 200 = 170

∴ 3x = 200 - 170

∴ x = 10

Since the point of intersection of two regression lines is `(bar x, bar y)`,

`bar x` = mean value of X = 10, and

`bar y` = mean value of Y = 20.

shaalaa.com
Properties of Regression Coefficients
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Linear Regression - Exercise 3.3 [पृष्ठ ५०]

APPEARS IN

संबंधित प्रश्‍न

From the data of 7 pairs of observations on X and Y, following results are obtained.

∑(xi - 70) = - 35,  ∑(yi - 60) = - 7,

∑(xi - 70)2 = 2989,    ∑(yi - 60)2 = 476, 

∑(xi - 70)(yi - 60) = 1064

[Given: `sqrt0.7884` = 0.8879]

Obtain

  1. The line of regression of Y on X.
  2. The line regression of X on Y.
  3. The correlation coefficient between X and Y.

Bring out the inconsistency in the following:

bYX = bXY = 1.50 and r = - 0.9 


Bring out the inconsistency in the following:

bYX = 1.9 and bXY = - 0.25


For a certain bivariate data

  X Y
Mean 25 20
S.D. 4 3

And r = 0.5. Estimate y when x = 10 and estimate x when y = 16


From the two regression equations, find r, `bar x and bar y`. 4y = 9x + 15 and 25x = 4y + 17


The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find `bar x, bar y`, r.


The two regression lines between height (X) in inches and weight (Y) in kgs of girls are,
4y − 15x + 500 = 0
and 20x − 3y − 900 = 0
Find the mean height and weight of the group. Also, estimate the weight of a girl whose height is 70 inches.


Choose the correct alternative:

|byx + bxy| ≥ ______


Choose the correct alternative:

If r = 0.5, σx = 3, `σ_"y"^2` = 16, then byx = ______


Choose the correct alternative:

If r = 0.5, σx = 3, σy2 = 16, then bxy = ______


Choose the correct alternative:

Both the regression coefficients cannot exceed 1


State whether the following statement is True or False:

Corr(x, x) = 0


The value of product moment correlation coefficient between x and x is ______


If u = `(x - 20)/5` and v = `(y - 30)/4`, then byx = ______


Given the following information about the production and demand of a commodity.
Obtain the two regression lines:

  ADVERTISEMENT (x)
(₹ in lakhs)
DEMAND (y)
(₹ in lakhs)
Mean 10 90
Variance 9 144

Coefficient of correlation between x and y is 0.8.
What should be the advertising budget if the company wants to attain the sales target of ₹ 150 lakhs?


For a certain bivariate data of a group of 10 students, the following information gives the internal marks obtained in English (X) and Hindi (Y):

  X Y
Mean 13 17
Standard Deviation 3 2

If r = 0.6, Estimate x when y = 16 and y when x = 10


Mean of x = 53

Mean of y = 28

Regression coefficient of y on x = – 1.2

Regression coefficient of x on y = – 0.3

a. r = `square`

b. When x = 50,

`y - square = square (50 - square)`

∴ y = `square`

c. When y = 25,

`x - square = square (25 - square)`

∴ x = `square`


x y xy x2 y2
6 9 54 36 81
2 11 22 4 121
10 5 50 100 25
4 8 32 16 64
8 7 `square` 64 49
Total = 30 Total = 40 Total = `square` Total = 220 Total = `square`

bxy = `square/square`

byx = `square/square`

∴ Regression equation of x on y is `square`

∴ Regression equation of y on x is `square`


The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 women.

  x y
Mean 53 142
Variance 130 165

`sum(x_i - barx)(y_i - bary)` = 1170


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×