Advertisements
Advertisements
प्रश्न
From the data of 7 pairs of observations on X and Y, following results are obtained.
∑(xi - 70) = - 35, ∑(yi - 60) = - 7,
∑(xi - 70)2 = 2989, ∑(yi - 60)2 = 476,
∑(xi - 70)(yi - 60) = 1064
[Given: `sqrt0.7884` = 0.8879]
Obtain
- The line of regression of Y on X.
- The line regression of X on Y.
- The correlation coefficient between X and Y.
उत्तर
Given: n =7, ∑(xi - 70) = - 35, ∑(yi - 60) = - 7,
∑(xi - 70)2 = 2989, ∑(yi - 60)2 = 476,
∑(xi - 70)(yi - 60) = 1064
Let ui = xi - 70 and vi = yi - 60
∴ ∑ ui = - 35, ∑ vi = - 7
`sum "u"_"i"^2 = 2989, sum "v"_"i"^2 = 479`
∑ ui vi = 1064
∴ `bar "u" = (sum "u"_"i")/"n" = (-35)/7 = - 5`
∴ `bar "v" = (sum "v"_"i")/"n" = (-7)/7 = - 1`
Now, `sigma_"u"^2 = (sum "u"_"i"^2)/"n" - (bar"u")^2`
`= 2989/7 - (- 5)^2` = 427 - 25 = 402
and `sigma_"v"^2 = (sum "v"_"i"^2)/"n" - (bar"v")^2`
`= 476/7 - (- 1)^2 = 68 - 1 = 67`
cov(u, v) = `(sum "u"_"i" "v"_"i")/"n" - bar"uv"`
`= 1064/7 - (- 5)(- 1)` = 152 - 5 = 147
Since the regression coefficients are independent of change of origin,
bYX = bVU and bXY = bUV
∴ bYX = bVU = `("cov" ("u", "v"))/sigma_"U"^2 = 147/402 = 0.36`
and bXY = bUV = `("cov" ("u", "v"))/sigma_"V"^2 = 147/67 = 2.19`
Also, `bar x = bar u` + 70 = - 5 + 70 = 65
and `bar y = bar v` + 60 = - 1 + 60 = 59
(i) The line of regression of Y on X is
`("Y" - bar y) = "b"_"YX" ("X" - bar x)`
∴ (Y - 59) = (0.36)(X - 65)
∴ Y - 59 = 0.36X - 23.4
∴ Y = 0.36X + 59 - 23.4
∴ Y = 0.36X + 35.6
(ii) The line of regression of X on Y is
`("X" - bar x) = "b"_"XY" ("Y" - bar y)`
∴ (X - 65) = (2.19)(Y - 59)
∴ X - 65 = 2.19Y - 129.21
∴ X = 2.19Y + 65 - 129.21
∴ X = 2.19Y - 64.21
(iii) r = `+-sqrt("b"_"YX" * "b"_"XY")`
`= +- sqrt((0.36)(2.19))`
`= +- sqrt0.7884 = +- 0.8879`
Since bYX and bXY both are positive,
r is also positive.
∴ r = 0.8879
APPEARS IN
संबंधित प्रश्न
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find Correlation coefficient between X and Y.
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of Y for X = 50.
Bring out the inconsistency in the following:
bYX + bXY = 1.30 and r = 0.75
Given the following information about the production and demand of a commodity obtain the two regression lines:
X | Y | |
Mean | 85 | 90 |
S.D. | 5 | 6 |
The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
Estimate the likely sales for a proposed advertisement expenditure of ₹ 10 crores.
If the two regression lines for a bivariate data are 2x = y + 15 (x on y) and 4y = 3x + 25 (y on x), find
- `bar x`,
- `bar y`,
- bYX
- bXY
- r [Given `sqrt0.375` = 0.61]
Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation. [Given `sqrt0.375` = 0.61]
The following results were obtained from records of age (X) and systolic blood pressure (Y) of a group of 10 men.
X | Y | |
Mean | 50 | 140 |
Variance | 150 | 165 |
and `sum (x_i - bar x)(y_i - bar y) = 1120`
Find the prediction of blood pressure of a man of age 40 years.
Choose the correct alternative:
|byx + bxy| ≥ ______
Choose the correct alternative:
Find the value of the covariance between X and Y, if the regression coefficient of Y on X is 3.75 and σx = 2, σy = 8
Choose the correct alternative:
Both the regression coefficients cannot exceed 1
State whether the following statement is True or False:
If u = x – a and v = y – b then bxy = buv
Corr(x, x) = 1
If the sign of the correlation coefficient is negative, then the sign of the slope of the respective regression line is ______
The value of product moment correlation coefficient between x and x is ______
The geometric mean of negative regression coefficients is ______
byx is the ______ of regression line of y on x
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Find the value of the correlation coefficient
x | y | xy | x2 | y2 |
6 | 9 | 54 | 36 | 81 |
2 | 11 | 22 | 4 | 121 |
10 | 5 | 50 | 100 | 25 |
4 | 8 | 32 | 16 | 64 |
8 | 7 | `square` | 64 | 49 |
Total = 30 | Total = 40 | Total = `square` | Total = 220 | Total = `square` |
bxy = `square/square`
byx = `square/square`
∴ Regression equation of x on y is `square`
∴ Regression equation of y on x is `square`
For a bivariate data:
`sum(x - overlinex)^2` = 1200, `sum(y - overliney)^2` = 300, `sum(x - overlinex)(y - overliney)` = – 250
Find:
- byx
- bxy
- Correlation coefficient between x and y.