Advertisements
Advertisements
प्रश्न
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
Estimate the likely sales for a proposed advertisement expenditure of ₹ 10 crores.
उत्तर
Let X = Sales,
Y = Advertisement expenditure
Given, `bar x = 40, bar y = 6, sigma_"X" = 10, sigma_"Y" = 1.5`, r = 0.9
`"b"_"XY" = "r" sigma_"X"/sigma_"Y" = 0.9 xx 10/1.5 = 6`
`"b"_"YX" = "r" sigma_"Y"/sigma_"X" = 0.9 xx 1.5/10 = 0.135`
The regression equation of X on Y is
`("X" - bar x) = "b"_"XY" ("Y" - bar y)`
∴ (X - 40) = 6(Y - 6)
∴ X - 40 = 6Y - 36
∴ X = 6Y - 36 + 40
∴ X = 6Y + 4
For Y = 10, we get
X = 6(10) + 4 = 60 + 4 = 64
∴ The likely sale is ₹ crores for a proposed advertisement expenditure of ₹ 10 crores.
APPEARS IN
संबंधित प्रश्न
Bring out the inconsistency in the following:
bYX = bXY = 1.50 and r = - 0.9
For certain bivariate data the following information is available.
X | Y | |
Mean | 13 | 17 |
S.D. | 3 | 2 |
Correlation coefficient between x and y is 0.6. estimate x when y = 15 and estimate y when x = 10.
From the two regression equations, find r, `bar x and bar y`. 4y = 9x + 15 and 25x = 4y + 17
In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:
Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information
- The mean values of X and Y.
- Correlation coefficient between X and Y.
- Standard deviation of Y.
The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.
The two regression lines between height (X) in inches and weight (Y) in kgs of girls are,
4y − 15x + 500 = 0
and 20x − 3y − 900 = 0
Find the mean height and weight of the group. Also, estimate the weight of a girl whose height is 70 inches.
The equations of two regression lines are 10x − 4y = 80 and 10y − 9x = − 40 Find:
- `bar x and bar y`
- bYX and bXY
- If var (Y) = 36, obtain var (X)
- r
Choose the correct alternative:
If for a bivariate data, bYX = – 1.2 and bXY = – 0.3, then r = ______
Choose the correct alternative:
bxy and byx are ______
State whether the following statement is True or False:
If u = x – a and v = y – b then bxy = buv
State whether the following statement is True or False:
Corr(x, x) = 0
Corr(x, x) = 1
State whether the following statement is True or False:
Cov(x, x) = Variance of x
State whether the following statement is True or False:
Regression coefficient of x on y is the slope of regression line of x on y
If n = 5, ∑xy = 76, ∑x2 = ∑y2 = 90, ∑x = 20 = ∑y, the covariance = ______
The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Find the value of the correlation coefficient `("Given" sqrt(0.933) = 0.9667)`
If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y)
The regression equation of y on x is 2x – 5y + 60 = 0
Mean of x = 18
`2 square - 5 bary + 60` = 0
∴ `bary = square`
`sigma_x : sigma_y` = 3 : 2
∴ byx = `square/square`
∴ byx = `square/square`
∴ r = `square`
|bxy + byz| ≥ ______.
For a bivariate data:
`sum(x - overlinex)^2` = 1200, `sum(y - overliney)^2` = 300, `sum(x - overlinex)(y - overliney)` = – 250
Find:
- byx
- bxy
- Correlation coefficient between x and y.