Advertisements
Advertisements
प्रश्न
In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:
Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information
- The mean values of X and Y.
- Correlation coefficient between X and Y.
- Standard deviation of Y.
उत्तर
Given, `sigma_"X"^2 = 9`
∴ σX = 3
(i) The two regression equations are
8x - 10y + 66 = 0
i.e., 8x - 10y = - 66 ...(i)
and 40x - 18y = 214 ....(ii)
By 5 × (i) - (ii), we get
40x - 50y = - 330
40x - 18y = 214
(-) (+) (-)
- 32y = - 544
∴ y = `544/32 = 17`
Substituting y = 17 in (i), we get
8x - 10 × 17 = - 66
∴ 8x - 170 = - 66
∴ 8x = - 66 + 170
∴ 8x = 104
∴ x = `104/8 = 13`
Since the point of intersection of two regression lines is `(bar x, bar y)`,
`bar x` = mean value of X = 13, and
`bar y` = mean value of X = 17.
(ii) Let 8x - 10y + 66 = 0 be the regression equation of Y on X.
∴ The equation becomes 10Y = 8X + 66
i.e., Y = `8/10 "X" + 66/10`
i.e., Y = `4/5 "X" + 33/5`
Comparing it with Y = bYX X + a, we get
`"b"_"YX" = 4/5`
Now, the other equation, i.e., 40x - 18y = 214 is the regression equation of X on Y.
∴ The equation becomes X = `18/40 "Y" + 214/40`
i.e., X = `9/20 "Y" + 107/20`
Comparing it with X = bXY Y + a', we get
`"b"_"XY" = 9/20`
r = `+- sqrt("b"_"XY" * "b"_"YX")`
∴ r = `+- sqrt(9/20 xx 4/5) = +- sqrt(9/25) = +- 3/5 = +- 0.6`
Since bYX and bXY both are positive,
r is also positive.
∴ r = 0.6
(iii) `"b"_"YX" = "r" sigma_"Y"/sigma_"X"`
∴ `4/5 = 0.6 xx sigma_"Y"/3`
∴ `4/5 = sigma_"Y"/5`
∴ `sigma_"Y" = 4`
APPEARS IN
संबंधित प्रश्न
Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from respective means is 136 and 150. The sum of the product of deviations from respective means is 123. Obtain the equation of the line of regression of X on Y.
An inquiry of 50 families to study the relationship between expenditure on accommodation (₹ x) and expenditure on food and entertainment (₹ y) gave the following results:
∑ x = 8500, ∑ y = 9600, σX = 60, σY = 20, r = 0.6
Estimate the expenditure on food and entertainment when expenditure on accommodation is Rs 200.
For certain bivariate data the following information is available.
X | Y | |
Mean | 13 | 17 |
S.D. | 3 | 2 |
Correlation coefficient between x and y is 0.6. estimate x when y = 15 and estimate y when x = 10.
For 50 students of a class, the regression equation of marks in statistics (X) on the marks in accountancy (Y) is 3y − 5x + 180 = 0. The variance of marks in statistics is `(9/16)^"th"` of the variance of marks in accountancy. Find the correlation coefficient between marks in two subjects.
The following results were obtained from records of age (X) and systolic blood pressure (Y) of a group of 10 men.
X | Y | |
Mean | 50 | 140 |
Variance | 150 | 165 |
and `sum (x_i - bar x)(y_i - bar y) = 1120`
Find the prediction of blood pressure of a man of age 40 years.
If bYX = − 0.6 and bXY = − 0.216, then find correlation coefficient between X and Y. Comment on it.
Choose the correct alternative:
If for a bivariate data, bYX = – 1.2 and bXY = – 0.3, then r = ______
Choose the correct alternative:
If the regression equation X on Y is 3x + 2y = 26, then bxy equal to
State whether the following statement is True or False:
If byx = 1.5 and bxy = `1/3` then r = `1/2`, the given data is consistent
Corr(x, x) = 1
The value of product moment correlation coefficient between x and x is ______
Arithmetic mean of positive values of regression coefficients is greater than or equal to ______
The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Find the value of the correlation coefficient `("Given" sqrt(0.933) = 0.9667)`
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
Production (X) |
Demand (Y) |
|
Mean | 85 | 90 |
Variance | 25 | 36 |
Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.
If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y)
x | y | `x - barx` | `y - bary` | `(x - barx)(y - bary)` | `(x - barx)^2` | `(y - bary)^2` |
1 | 5 | – 2 | – 4 | 8 | 4 | 16 |
2 | 7 | – 1 | – 2 | `square` | 1 | 4 |
3 | 9 | 0 | 0 | 0 | 0 | 0 |
4 | 11 | 1 | 2 | 2 | 4 | 4 |
5 | 13 | 2 | 4 | 8 | 1 | 16 |
Total = 15 | Total = 45 | Total = 0 | Total = 0 | Total = `square` | Total = 10 | Total = 40 |
Mean of x = `barx = square`
Mean of y = `bary = square`
bxy = `square/square`
byx = `square/square`
Regression equation of x on y is `(x - barx) = "b"_(xy) (y - bary)`
∴ Regression equation x on y is `square`
Regression equation of y on x is `(y - bary) = "b"_(yx) (x - barx)`
∴ Regression equation of y on x is `square`
The regression equation of y on x is 2x – 5y + 60 = 0
Mean of x = 18
`2 square - 5 bary + 60` = 0
∴ `bary = square`
`sigma_x : sigma_y` = 3 : 2
∴ byx = `square/square`
∴ byx = `square/square`
∴ r = `square`
bxy . byx = ______.
The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 women.
x | y | |
Mean | 53 | 142 |
Variance | 130 | 165 |
`sum(x_i - barx)(y_i - bary)` = 1170
|bxy + byz| ≥ ______.