Advertisements
Advertisements
प्रश्न
From the two regression equations, find r, `bar x and bar y`. 4y = 9x + 15 and 25x = 4y + 17
उत्तर
Given regression equations are
4y = 9x + 15
i.e., - 9x + 4y = 15 ....(i)
and 25x = 4y + 17
i.e., 25x - 4y = 17 ...(ii)
Adding equations (i) and (ii), we get
- 9x + 4y = 15
25x - 4y = 17
16x = 32
∴ x = 2
Substituting x = 2 in (i), we get
- 9(2) + 4y = 15
∴ - 18 + 4y = 15
∴ 4y = 33
∴ y = 8.25
Since the point of intersection of two regression lines is `(bar x, bar y), bar x = 2 and bar y = 8.25`
Let 4y = 9x + 15 be the regression equation of Y on X.
∴ The equation becomes Y = `9/2 "X" + 15/4`
Comparing it with Y = bYX X + a, we get
`"b"_"YX" = 9/4 = 2.25`
Now, the other equation, i.e., 25x = 4y + 17 is the regression equation of X on Y.
∴ The equation becomes X = `4/25 "Y" + 17/25`
Comparing it with X = bXY Y + a', we get
`"b"_"XY" = 4/25 = 0.16`
r = `+-sqrt("b"_"XY" * "b"_"YX")`
`= +- sqrt (0.16 xx 2.25)`
`= +- sqrt0.36 = +- 0.6`
Since bYX and bXY are positive,
r is also positive.
∴ r = 0.6
∴ `bar x = 2 and bar y = 8.25` and r = 0.6
APPEARS IN
संबंधित प्रश्न
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of X for Y = 25.
Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from respective means is 136 and 150. The sum of the product of deviations from respective means is 123. Obtain the equation of the line of regression of X on Y.
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
Estimate the likely sales for a proposed advertisement expenditure of ₹ 10 crores.
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
What should be the advertisement expenditure if the firm proposes a sales target ₹ 60 crores?
For 50 students of a class, the regression equation of marks in statistics (X) on the marks in accountancy (Y) is 3y − 5x + 180 = 0. The variance of marks in statistics is `(9/16)^"th"` of the variance of marks in accountancy. Find the correlation coefficient between marks in two subjects.
For a bivariate data: `bar x = 53, bar y = 28,` bYX = - 1.5 and bXY = - 0.2. Estimate Y when X = 50.
If the two regression lines for a bivariate data are 2x = y + 15 (x on y) and 4y = 3x + 25 (y on x), find
- `bar x`,
- `bar y`,
- bYX
- bXY
- r [Given `sqrt0.375` = 0.61]
For certain X and Y series, which are correlated the two lines of regression are 10y = 3x + 170 and 5x + 70 = 6y. Find the correlation coefficient between them. Find the mean values of X and Y.
Choose the correct alternative:
bxy and byx are ______
Choose the correct alternative:
If r = 0.5, σx = 3, `σ_"y"^2` = 16, then byx = ______
State whether the following statement is True or False:
If byx = 1.5 and bxy = `1/3` then r = `1/2`, the given data is consistent
Corr(x, x) = 1
State whether the following statement is True or False:
Cov(x, x) = Variance of x
If u = `(x - "a")/"c"` and v = `(y - "b")/"d"`, then bxy = ______
Arithmetic mean of positive values of regression coefficients is greater than or equal to ______
If byx > 1 then bxy is _______.
|bxy + byz| ≥ ______.
For a bivariate data:
`sum(x - overlinex)^2` = 1200, `sum(y - overliney)^2` = 300, `sum(x - overlinex)(y - overliney)` = – 250
Find:
- byx
- bxy
- Correlation coefficient between x and y.