मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

For certain bivariate data the following information is available. For certain bivariate data the following information is available. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For certain bivariate data the following information is available.

  X Y
Mean 13 17
S.D. 3 2

Correlation coefficient between x and y is 0.6. estimate x when y = 15 and estimate y when x = 10.

बेरीज

उत्तर

Given, `bar x = 13, bar y = 1, sigma_"X" 3, sigma_"Y" = 2,` r = 0.6

`"b"_"YX" = "r" sigma_"Y"/sigma_"X" = 0.6 xx 2/3 = 0.4`

`"b"_"XY" = "r" sigma_"X"/sigma_"Y" = 0.6 xx 3/2 = 0.9`

The regression equation of X on Y is given by

`("X" - bar x) = "b"_"XY" ("Y" - bar y)`

(X - 13) = 0.9 (Y - 17)

X - 13 = 0.9Y - 15.3

X = 0.9Y - 15.3 + 13

X = - 2.3 + 0.9Y          ....(i)

For Y = 15, from equation (i) we get

X = - 2.3 + (0.9)(15) = - 2.3 + 13.5 = 11.2

The regression equation of Y on X is given by

`("Y" - bar y) = "b"_"YX" ("X" - bar x)`

(Y - 17) = 0.4(X - 13)

Y - 17 = 0.4X - 5.2

Y = 0.4X - 5.2 + 17

Y = 11.8 + 0.4X             .....(ii)

For X = 10, from equation (ii) we get

Y = 11.8 + 0.4(10) = 11.8 + 4 = 15.8

shaalaa.com
Properties of Regression Coefficients
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Linear Regression - Exercise 3.2 [पृष्ठ ४८]

APPEARS IN

संबंधित प्रश्‍न

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of X for Y = 25.


Given the following information about the production and demand of a commodity obtain the two regression lines:

  X Y
Mean 85 90
S.D. 5 6

The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.


An inquiry of 50 families to study the relationship between expenditure on accommodation (₹ x) and expenditure on food and entertainment (₹ y) gave the following results: 

∑ x = 8500, ∑ y = 9600, σX = 60, σY = 20, r = 0.6

Estimate the expenditure on food and entertainment when expenditure on accommodation is Rs 200.


For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.


The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.


Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation.  [Given `sqrt0.375` = 0.61]


Find the line of regression of X on Y for the following data:

n = 8, `sum(x_i - bar x)^2 = 36, sum(y_i - bar y)^2 = 44, sum(x_i - bar x)(y_i - bar y) = 24`


If bYX = − 0.6 and bXY = − 0.216, then find correlation coefficient between X and Y. Comment on it.


State whether the following statement is True or False: 

If bxy < 0 and byx < 0 then ‘r’ is > 0


The following data is not consistent: byx + bxy =1.3 and r = 0.75


State whether the following statement is True or False:

Cov(x, x) = Variance of x


If n = 5, ∑xy = 76, ∑x2 = ∑y2 = 90, ∑x = 20 = ∑y, the covariance = ______


|bxy + byx| ≥ ______


Arithmetic mean of positive values of regression coefficients is greater than or equal to ______


If u = `(x - 20)/5` and v = `(y - 30)/4`, then byx = ______


byx is the ______ of regression line of y on x


Given the following information about the production and demand of a commodity.
Obtain the two regression lines:

  ADVERTISEMENT (x)
(₹ in lakhs)
DEMAND (y)
(₹ in lakhs)
Mean 10 90
Variance 9 144

Coefficient of correlation between x and y is 0.8.
What should be the advertising budget if the company wants to attain the sales target of ₹ 150 lakhs?


Given the following information about the production and demand of a commodity.

Obtain the two regression lines:

  Production
(X)
Demand
(Y)
Mean 85 90
Variance 25 36

Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.


x y xy x2 y2
6 9 54 36 81
2 11 22 4 121
10 5 50 100 25
4 8 32 16 64
8 7 `square` 64 49
Total = 30 Total = 40 Total = `square` Total = 220 Total = `square`

bxy = `square/square`

byx = `square/square`

∴ Regression equation of x on y is `square`

∴ Regression equation of y on x is `square`


bxy . byx = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×