Advertisements
Advertisements
प्रश्न
For certain bivariate data the following information is available.
X | Y | |
Mean | 13 | 17 |
S.D. | 3 | 2 |
Correlation coefficient between x and y is 0.6. estimate x when y = 15 and estimate y when x = 10.
उत्तर
Given, `bar x = 13, bar y = 1, sigma_"X" 3, sigma_"Y" = 2,` r = 0.6
`"b"_"YX" = "r" sigma_"Y"/sigma_"X" = 0.6 xx 2/3 = 0.4`
`"b"_"XY" = "r" sigma_"X"/sigma_"Y" = 0.6 xx 3/2 = 0.9`
The regression equation of X on Y is given by
`("X" - bar x) = "b"_"XY" ("Y" - bar y)`
(X - 13) = 0.9 (Y - 17)
X - 13 = 0.9Y - 15.3
X = 0.9Y - 15.3 + 13
X = - 2.3 + 0.9Y ....(i)
For Y = 15, from equation (i) we get
X = - 2.3 + (0.9)(15) = - 2.3 + 13.5 = 11.2
The regression equation of Y on X is given by
`("Y" - bar y) = "b"_"YX" ("X" - bar x)`
(Y - 17) = 0.4(X - 13)
Y - 17 = 0.4X - 5.2
Y = 0.4X - 5.2 + 17
Y = 11.8 + 0.4X .....(ii)
For X = 10, from equation (ii) we get
Y = 11.8 + 0.4(10) = 11.8 + 4 = 15.8
APPEARS IN
संबंधित प्रश्न
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of X for Y = 25.
Given the following information about the production and demand of a commodity obtain the two regression lines:
X | Y | |
Mean | 85 | 90 |
S.D. | 5 | 6 |
The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.
An inquiry of 50 families to study the relationship between expenditure on accommodation (₹ x) and expenditure on food and entertainment (₹ y) gave the following results:
∑ x = 8500, ∑ y = 9600, σX = 60, σY = 20, r = 0.6
Estimate the expenditure on food and entertainment when expenditure on accommodation is Rs 200.
For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.
The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.
Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation. [Given `sqrt0.375` = 0.61]
Find the line of regression of X on Y for the following data:
n = 8, `sum(x_i - bar x)^2 = 36, sum(y_i - bar y)^2 = 44, sum(x_i - bar x)(y_i - bar y) = 24`
If bYX = − 0.6 and bXY = − 0.216, then find correlation coefficient between X and Y. Comment on it.
State whether the following statement is True or False:
If bxy < 0 and byx < 0 then ‘r’ is > 0
The following data is not consistent: byx + bxy =1.3 and r = 0.75
State whether the following statement is True or False:
Cov(x, x) = Variance of x
If n = 5, ∑xy = 76, ∑x2 = ∑y2 = 90, ∑x = 20 = ∑y, the covariance = ______
|bxy + byx| ≥ ______
Arithmetic mean of positive values of regression coefficients is greater than or equal to ______
If u = `(x - 20)/5` and v = `(y - 30)/4`, then byx = ______
byx is the ______ of regression line of y on x
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
ADVERTISEMENT (x) (₹ in lakhs) |
DEMAND (y) (₹ in lakhs) |
|
Mean | 10 | 90 |
Variance | 9 | 144 |
Coefficient of correlation between x and y is 0.8.
What should be the advertising budget if the company wants to attain the sales target of ₹ 150 lakhs?
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
Production (X) |
Demand (Y) |
|
Mean | 85 | 90 |
Variance | 25 | 36 |
Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.
x | y | xy | x2 | y2 |
6 | 9 | 54 | 36 | 81 |
2 | 11 | 22 | 4 | 121 |
10 | 5 | 50 | 100 | 25 |
4 | 8 | 32 | 16 | 64 |
8 | 7 | `square` | 64 | 49 |
Total = 30 | Total = 40 | Total = `square` | Total = 220 | Total = `square` |
bxy = `square/square`
byx = `square/square`
∴ Regression equation of x on y is `square`
∴ Regression equation of y on x is `square`
bxy . byx = ______.