Advertisements
Advertisements
Question
For certain bivariate data the following information is available.
X | Y | |
Mean | 13 | 17 |
S.D. | 3 | 2 |
Correlation coefficient between x and y is 0.6. estimate x when y = 15 and estimate y when x = 10.
Solution
Given, `bar x = 13, bar y = 1, sigma_"X" 3, sigma_"Y" = 2,` r = 0.6
`"b"_"YX" = "r" sigma_"Y"/sigma_"X" = 0.6 xx 2/3 = 0.4`
`"b"_"XY" = "r" sigma_"X"/sigma_"Y" = 0.6 xx 3/2 = 0.9`
The regression equation of X on Y is given by
`("X" - bar x) = "b"_"XY" ("Y" - bar y)`
(X - 13) = 0.9 (Y - 17)
X - 13 = 0.9Y - 15.3
X = 0.9Y - 15.3 + 13
X = - 2.3 + 0.9Y ....(i)
For Y = 15, from equation (i) we get
X = - 2.3 + (0.9)(15) = - 2.3 + 13.5 = 11.2
The regression equation of Y on X is given by
`("Y" - bar y) = "b"_"YX" ("X" - bar x)`
(Y - 17) = 0.4(X - 13)
Y - 17 = 0.4X - 5.2
Y = 0.4X - 5.2 + 17
Y = 11.8 + 0.4X .....(ii)
For X = 10, from equation (ii) we get
Y = 11.8 + 0.4(10) = 11.8 + 4 = 15.8
APPEARS IN
RELATED QUESTIONS
Bring out the inconsistency in the following:
bYX = bXY = 1.50 and r = - 0.9
For a certain bivariate data
X | Y | |
Mean | 25 | 20 |
S.D. | 4 | 3 |
And r = 0.5. Estimate y when x = 10 and estimate x when y = 16
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
What should be the advertisement expenditure if the firm proposes a sales target ₹ 60 crores?
From the two regression equations, find r, `bar x and bar y`. 4y = 9x + 15 and 25x = 4y + 17
For a bivariate data: `bar x = 53, bar y = 28,` bYX = - 1.5 and bXY = - 0.2. Estimate Y when X = 50.
Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.
For certain X and Y series, which are correlated the two lines of regression are 10y = 3x + 170 and 5x + 70 = 6y. Find the correlation coefficient between them. Find the mean values of X and Y.
Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation. [Given `sqrt0.375` = 0.61]
If bYX = − 0.6 and bXY = − 0.216, then find correlation coefficient between X and Y. Comment on it.
Choose the correct alternative:
If for a bivariate data, bYX = – 1.2 and bXY = – 0.3, then r = ______
Choose the correct alternative:
If byx < 0 and bxy < 0, then r is ______
State whether the following statement is True or False:
Regression coefficient of x on y is the slope of regression line of x on y
If u = `(x - "a")/"c"` and v = `(y - "b")/"d"`, then bxy = ______
If u = `(x - 20)/5` and v = `(y - 30)/4`, then byx = ______
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
ADVERTISEMENT (x) (₹ in lakhs) |
DEMAND (y) (₹ in lakhs) |
|
Mean | 10 | 90 |
Variance | 9 | 144 |
Coefficient of correlation between x and y is 0.8.
What should be the advertising budget if the company wants to attain the sales target of ₹ 150 lakhs?
The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Find the value of the correlation coefficient `("Given" sqrt(0.933) = 0.9667)`
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
Production (X) |
Demand (Y) |
|
Mean | 85 | 90 |
Variance | 25 | 36 |
Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.
x | y | `x - barx` | `y - bary` | `(x - barx)(y - bary)` | `(x - barx)^2` | `(y - bary)^2` |
1 | 5 | – 2 | – 4 | 8 | 4 | 16 |
2 | 7 | – 1 | – 2 | `square` | 1 | 4 |
3 | 9 | 0 | 0 | 0 | 0 | 0 |
4 | 11 | 1 | 2 | 2 | 4 | 4 |
5 | 13 | 2 | 4 | 8 | 1 | 16 |
Total = 15 | Total = 45 | Total = 0 | Total = 0 | Total = `square` | Total = 10 | Total = 40 |
Mean of x = `barx = square`
Mean of y = `bary = square`
bxy = `square/square`
byx = `square/square`
Regression equation of x on y is `(x - barx) = "b"_(xy) (y - bary)`
∴ Regression equation x on y is `square`
Regression equation of y on x is `(y - bary) = "b"_(yx) (x - barx)`
∴ Regression equation of y on x is `square`