English

Bring out the inconsistency in the following: bYX = bXY = 1.50 and r = - 0.9 - Mathematics and Statistics

Advertisements
Advertisements

Question

Bring out the inconsistency in the following:

bYX = bXY = 1.50 and r = - 0.9 

Sum

Solution

Given, bYX = bXY = 1.50 and r = - 0.9 

Here, the coefficient of regressions is positive and the coefficient of correlation is negative.

But, for consistent data they must have the same signs.

∴ The given data is inconsistent.

shaalaa.com
Properties of Regression Coefficients
  Is there an error in this question or solution?
Chapter 3: Linear Regression - Exercise 3.2 [Page 47]

APPEARS IN

RELATED QUESTIONS

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find Correlation coefficient between X and Y.


For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of Y for X = 50.


Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from respective means is 136 and 150. The sum of the product of deviations from respective means is 123. Obtain the equation of the line of regression of X on Y.


For certain bivariate data the following information is available.

  X Y
Mean 13 17
S.D. 3 2

Correlation coefficient between x and y is 0.6. estimate x when y = 15 and estimate y when x = 10.


From the two regression equations, find r, `bar x and bar y`. 4y = 9x + 15 and 25x = 4y + 17


In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:

Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information

  1. The mean values of X and Y.
  2. Correlation coefficient between X and Y.
  3. Standard deviation of Y.

The equations of two regression lines are
2x + 3y − 6 = 0
and 3x + 2y − 12 = 0 Find 

  1. Correlation coefficient
  2. `sigma_"X"/sigma_"Y"`

The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.


If the two regression lines for a bivariate data are 2x = y + 15 (x on y) and 4y = 3x + 25 (y on x), find

  1. `bar x`,
  2. `bar y`,
  3. bYX
  4. bXY
  5. r [Given `sqrt0.375` = 0.61]

Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.


The following results were obtained from records of age (X) and systolic blood pressure (Y) of a group of 10 men.

  X Y
Mean 50 140
Variance 150 165

and `sum (x_i - bar x)(y_i - bar y) = 1120`

Find the prediction of blood pressure of a man of age 40 years.


The equations of two regression lines are 10x − 4y = 80 and 10y − 9x = − 40 Find:

  1. `bar x and bar y`
  2. bYX and bXY
  3. If var (Y) = 36, obtain var (X)
  4. r

If bYX = − 0.6 and bXY = − 0.216, then find correlation coefficient between X and Y. Comment on it.


Choose the correct alternative:

If byx < 0 and bxy < 0, then r is ______


Choose the correct alternative:

If r = 0.5, σx = 3, `σ_"y"^2` = 16, then byx = ______


Choose the correct alternative:

Both the regression coefficients cannot exceed 1


State whether the following statement is True or False:

If byx = 1.5 and bxy = `1/3` then r = `1/2`, the given data is consistent


The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Find the value of the correlation coefficient `("Given"  sqrt(0.933) = 0.9667)`


The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 women.

  x y
Mean 53 142
Variance 130 165

`sum(x_i - barx)(y_i - bary)` = 1170


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×