Advertisements
Advertisements
प्रश्न
An inquiry of 50 families to study the relationship between expenditure on accommodation (₹ x) and expenditure on food and entertainment (₹ y) gave the following results:
∑ x = 8500, ∑ y = 9600, σX = 60, σY = 20, r = 0.6
Estimate the expenditure on food and entertainment when expenditure on accommodation is Rs 200.
उत्तर
X = Expenditure on accommodation.
Y = Expenditure on food and entertainment
Given, ∑ x = 8500, ∑ y = 9600, σX = 60, σY = 20, r = 0.6, n = 50
∴ `bar x = (sum x)/"n" = 8500/50 = 170`
`bar y = (sum y)/"n" = 9600/50 = 192`
Now, `"b"_"YX" = "r" sigma_"Y"/sigma_"X" = 0.6 xx 20/60 = 0.2`
Also, `"a" = bar y - "b"_"YX" bar x`
= 192 - 0.2 × 170 = 192 - 34 = 158
The regression equation of Y on X is
Y = a + bYX X
∴ Y = 158 + 0.2 X
For X = 200,
Y = 158 + 0.2 × 200 = 158 + 40 = 198
∴ The expenditure on food and entertainment is
₹ 198 when expenditure on accommodation is ₹ 200.
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of Y for X = 50.
Bring out the inconsistency in the following:
bYX + bXY = 1.30 and r = 0.75
For a certain bivariate data
X | Y | |
Mean | 25 | 20 |
S.D. | 4 | 3 |
And r = 0.5. Estimate y when x = 10 and estimate x when y = 16
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
What should be the advertisement expenditure if the firm proposes a sales target ₹ 60 crores?
The equations of two regression lines are
2x + 3y − 6 = 0
and 3x + 2y − 12 = 0 Find
- Correlation coefficient
- `sigma_"X"/sigma_"Y"`
The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.
If the two regression lines for a bivariate data are 2x = y + 15 (x on y) and 4y = 3x + 25 (y on x), find
- `bar x`,
- `bar y`,
- bYX
- bXY
- r [Given `sqrt0.375` = 0.61]
The following results were obtained from records of age (X) and systolic blood pressure (Y) of a group of 10 men.
X | Y | |
Mean | 50 | 140 |
Variance | 150 | 165 |
and `sum (x_i - bar x)(y_i - bar y) = 1120`
Find the prediction of blood pressure of a man of age 40 years.
If bYX = − 0.6 and bXY = − 0.216, then find correlation coefficient between X and Y. Comment on it.
Choose the correct alternative:
Find the value of the covariance between X and Y, if the regression coefficient of Y on X is 3.75 and σx = 2, σy = 8
State whether the following statement is True or False:
If byx = 1.5 and bxy = `1/3` then r = `1/2`, the given data is consistent
State whether the following statement is True or False:
Cov(x, x) = Variance of x
If u = `(x - 20)/5` and v = `(y - 30)/4`, then byx = ______
The geometric mean of negative regression coefficients is ______
Mean of x = 53
Mean of y = 28
Regression coefficient of y on x = – 1.2
Regression coefficient of x on y = – 0.3
a. r = `square`
b. When x = 50,
`y - square = square (50 - square)`
∴ y = `square`
c. When y = 25,
`x - square = square (25 - square)`
∴ x = `square`
x | y | xy | x2 | y2 |
6 | 9 | 54 | 36 | 81 |
2 | 11 | 22 | 4 | 121 |
10 | 5 | 50 | 100 | 25 |
4 | 8 | 32 | 16 | 64 |
8 | 7 | `square` | 64 | 49 |
Total = 30 | Total = 40 | Total = `square` | Total = 220 | Total = `square` |
bxy = `square/square`
byx = `square/square`
∴ Regression equation of x on y is `square`
∴ Regression equation of y on x is `square`
bxy . byx = ______.
|bxy + byz| ≥ ______.
For a bivariate data:
`sum(x - overlinex)^2` = 1200, `sum(y - overliney)^2` = 300, `sum(x - overlinex)(y - overliney)` = – 250
Find:
- byx
- bxy
- Correlation coefficient between x and y.