मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

An inquiry of 50 families to study the relationship between expenditure on accommodation (₹ x) and expenditure on food and entertainment (₹ y) gave the following results: - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

An inquiry of 50 families to study the relationship between expenditure on accommodation (₹ x) and expenditure on food and entertainment (₹ y) gave the following results: 

∑ x = 8500, ∑ y = 9600, σX = 60, σY = 20, r = 0.6

Estimate the expenditure on food and entertainment when expenditure on accommodation is Rs 200.

बेरीज

उत्तर

X = Expenditure on accommodation.

Y = Expenditure on food and entertainment

Given, ∑ x = 8500, ∑ y = 9600, σX = 60, σY = 20, r = 0.6, n = 50

∴ `bar x = (sum x)/"n" = 8500/50 = 170`

`bar y = (sum y)/"n" = 9600/50 = 192`

Now, `"b"_"YX" = "r" sigma_"Y"/sigma_"X" = 0.6 xx 20/60 = 0.2`

Also, `"a" = bar y - "b"_"YX"  bar x`

= 192 - 0.2 × 170 = 192 - 34 = 158

The regression equation of Y on X is

Y = a + bYX X

∴ Y = 158 + 0.2 X

For X = 200,

Y = 158 + 0.2 × 200 = 158 + 40 = 198

∴ The expenditure on food and entertainment is
₹ 198 when expenditure on accommodation is ₹ 200.

shaalaa.com

Notes

The answer in the textbook is incorrect.

Properties of Regression Coefficients
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Linear Regression - Exercise 3.2 [पृष्ठ ४८]

APPEARS IN

संबंधित प्रश्‍न

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of Y for X = 50.


Bring out the inconsistency in the following:

bYX + bXY = 1.30 and r = 0.75 


For a certain bivariate data

  X Y
Mean 25 20
S.D. 4 3

And r = 0.5. Estimate y when x = 10 and estimate x when y = 16


The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)

  Sales Adv. Exp.
Mean 40 6
S.D. 10 1.5

Coefficient of correlation between sales and advertisement expenditure is 0.9.

What should be the advertisement expenditure if the firm proposes a sales target ₹ 60 crores?


The equations of two regression lines are
2x + 3y − 6 = 0
and 3x + 2y − 12 = 0 Find 

  1. Correlation coefficient
  2. `sigma_"X"/sigma_"Y"`

The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.


If the two regression lines for a bivariate data are 2x = y + 15 (x on y) and 4y = 3x + 25 (y on x), find

  1. `bar x`,
  2. `bar y`,
  3. bYX
  4. bXY
  5. r [Given `sqrt0.375` = 0.61]

The following results were obtained from records of age (X) and systolic blood pressure (Y) of a group of 10 men.

  X Y
Mean 50 140
Variance 150 165

and `sum (x_i - bar x)(y_i - bar y) = 1120`

Find the prediction of blood pressure of a man of age 40 years.


If bYX = − 0.6 and bXY = − 0.216, then find correlation coefficient between X and Y. Comment on it.


Choose the correct alternative:

Find the value of the covariance between X and Y, if the regression coefficient of Y on X is 3.75 and σx = 2, σy = 8


State whether the following statement is True or False:

If byx = 1.5 and bxy = `1/3` then r = `1/2`, the given data is consistent


State whether the following statement is True or False:

Cov(x, x) = Variance of x


If u = `(x - 20)/5` and v = `(y - 30)/4`, then byx = ______


The geometric mean of negative regression coefficients is ______


Mean of x = 53

Mean of y = 28

Regression coefficient of y on x = – 1.2

Regression coefficient of x on y = – 0.3

a. r = `square`

b. When x = 50,

`y - square = square (50 - square)`

∴ y = `square`

c. When y = 25,

`x - square = square (25 - square)`

∴ x = `square`


x y xy x2 y2
6 9 54 36 81
2 11 22 4 121
10 5 50 100 25
4 8 32 16 64
8 7 `square` 64 49
Total = 30 Total = 40 Total = `square` Total = 220 Total = `square`

bxy = `square/square`

byx = `square/square`

∴ Regression equation of x on y is `square`

∴ Regression equation of y on x is `square`


bxy . byx = ______.


|bxy + byz| ≥ ______.


For a bivariate data:

`sum(x - overlinex)^2` = 1200, `sum(y - overliney)^2` = 300, `sum(x - overlinex)(y - overliney)` = – 250

Find: 

  1. byx
  2. bxy
  3. Correlation coefficient between x and y.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×