मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Mean of x = 53 Mean of y = 28 Regression coefficient of y on x = – 1.2 Regression coefficient of x on y = – 0.3 a. r = □ b. When x = 50, y-□=□(50-□) ∴ y = □ c. When y = 25, x-□=□(25-□) ∴ x = □ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Mean of x = 53

Mean of y = 28

Regression coefficient of y on x = – 1.2

Regression coefficient of x on y = – 0.3

a. r = `square`

b. When x = 50,

`y - square = square (50 - square)`

∴ y = `square`

c. When y = 25,

`x - square = square (25 - square)`

∴ x = `square`

रिकाम्या जागा भरा
बेरीज

उत्तर

Mean of x = 53

Mean of y = 28

Regression coefficient of y on x = – 1.2

Regression coefficient of x on y = – 0.3

a. r = `+- sqrt("b"_(xy)*"b"_(yx))`

= `+- sqrt((-0.3)(-1.2))`

= `+-  0.6`

Since bYX and bXY both are – negative,

r is also negative.

∴ r = – 0.6

b.  When x = 50,

`(y - bary) = "b"_(yx)  (x- barx)`

∴ `(y - 28) = - 1.2 (50 - 53)`

∴ y = 28 – 60 + 63.6

∴ y = 31.6

c. When y = 25,

`(x - 53) = - 0.3 (25 - 28)`

∴ X = 53 – 7.5 + 8.4

∴ X = 53.9

shaalaa.com
Properties of Regression Coefficients
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.3: Linear Regression - Q.5

संबंधित प्रश्‍न

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find Correlation coefficient between X and Y.


From the data of 7 pairs of observations on X and Y, following results are obtained.

∑(xi - 70) = - 35,  ∑(yi - 60) = - 7,

∑(xi - 70)2 = 2989,    ∑(yi - 60)2 = 476, 

∑(xi - 70)(yi - 60) = 1064

[Given: `sqrt0.7884` = 0.8879]

Obtain

  1. The line of regression of Y on X.
  2. The line regression of X on Y.
  3. The correlation coefficient between X and Y.

Given the following information about the production and demand of a commodity obtain the two regression lines:

  X Y
Mean 85 90
S.D. 5 6

The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.


For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.


Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.


Find the line of regression of X on Y for the following data:

n = 8, `sum(x_i - bar x)^2 = 36, sum(y_i - bar y)^2 = 44, sum(x_i - bar x)(y_i - bar y) = 24`


If bYX = − 0.6 and bXY = − 0.216, then find correlation coefficient between X and Y. Comment on it.


Choose the correct alternative:

If for a bivariate data, bYX = – 1.2 and bXY = – 0.3, then r = ______


Choose the correct alternative:

If byx < 0 and bxy < 0, then r is ______


Choose the correct alternative:

bxy and byx are ______


Choose the correct alternative:

If r = 0.5, σx = 3, σy2 = 16, then bxy = ______


|bxy + byx| ≥ ______


If the sign of the correlation coefficient is negative, then the sign of the slope of the respective regression line is ______


The geometric mean of negative regression coefficients is ______


Given the following information about the production and demand of a commodity.
Obtain the two regression lines:

  ADVERTISEMENT (x)
(₹ in lakhs)
DEMAND (y)
(₹ in lakhs)
Mean 10 90
Variance 9 144

Coefficient of correlation between x and y is 0.8.
What should be the advertising budget if the company wants to attain the sales target of ₹ 150 lakhs?


The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Find the value of the correlation coefficient


bxy . byx = ______.


The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 women.

  x y
Mean 53 142
Variance 130 165

`sum(x_i - barx)(y_i - bary)` = 1170


|bxy + byz| ≥ ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×