Advertisements
Advertisements
प्रश्न
Mean of x = 53
Mean of y = 28
Regression coefficient of y on x = – 1.2
Regression coefficient of x on y = – 0.3
a. r = `square`
b. When x = 50,
`y - square = square (50 - square)`
∴ y = `square`
c. When y = 25,
`x - square = square (25 - square)`
∴ x = `square`
उत्तर
Mean of x = 53
Mean of y = 28
Regression coefficient of y on x = – 1.2
Regression coefficient of x on y = – 0.3
a. r = `+- sqrt("b"_(xy)*"b"_(yx))`
= `+- sqrt((-0.3)(-1.2))`
= `+- 0.6`
Since bYX and bXY both are – negative,
r is also negative.
∴ r = – 0.6
b. When x = 50,
`(y - bary) = "b"_(yx) (x- barx)`
∴ `(y - 28) = - 1.2 (50 - 53)`
∴ y = 28 – 60 + 63.6
∴ y = 31.6
c. When y = 25,
`(x - 53) = - 0.3 (25 - 28)`
∴ X = 53 – 7.5 + 8.4
∴ X = 53.9
APPEARS IN
संबंधित प्रश्न
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find Correlation coefficient between X and Y.
From the data of 7 pairs of observations on X and Y, following results are obtained.
∑(xi - 70) = - 35, ∑(yi - 60) = - 7,
∑(xi - 70)2 = 2989, ∑(yi - 60)2 = 476,
∑(xi - 70)(yi - 60) = 1064
[Given: `sqrt0.7884` = 0.8879]
Obtain
- The line of regression of Y on X.
- The line regression of X on Y.
- The correlation coefficient between X and Y.
Given the following information about the production and demand of a commodity obtain the two regression lines:
X | Y | |
Mean | 85 | 90 |
S.D. | 5 | 6 |
The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.
For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.
Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.
Find the line of regression of X on Y for the following data:
n = 8, `sum(x_i - bar x)^2 = 36, sum(y_i - bar y)^2 = 44, sum(x_i - bar x)(y_i - bar y) = 24`
If bYX = − 0.6 and bXY = − 0.216, then find correlation coefficient between X and Y. Comment on it.
Choose the correct alternative:
If for a bivariate data, bYX = – 1.2 and bXY = – 0.3, then r = ______
Choose the correct alternative:
If byx < 0 and bxy < 0, then r is ______
Choose the correct alternative:
bxy and byx are ______
Choose the correct alternative:
If r = 0.5, σx = 3, σy2 = 16, then bxy = ______
|bxy + byx| ≥ ______
If the sign of the correlation coefficient is negative, then the sign of the slope of the respective regression line is ______
The geometric mean of negative regression coefficients is ______
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
ADVERTISEMENT (x) (₹ in lakhs) |
DEMAND (y) (₹ in lakhs) |
|
Mean | 10 | 90 |
Variance | 9 | 144 |
Coefficient of correlation between x and y is 0.8.
What should be the advertising budget if the company wants to attain the sales target of ₹ 150 lakhs?
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Find the value of the correlation coefficient
bxy . byx = ______.
The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 women.
x | y | |
Mean | 53 | 142 |
Variance | 130 | 165 |
`sum(x_i - barx)(y_i - bary)` = 1170
|bxy + byz| ≥ ______.