मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 women. x y Mean 53 142 Variance 130 165 ∑(xi-x¯)(yi-y¯) = 1170 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 women.

  x y
Mean 53 142
Variance 130 165

`sum(x_i - barx)(y_i - bary)` = 1170

बेरीज

उत्तर

Here. we need to find line of regressoin of y on x. which is given as:

`bary = "a" + "b"_("y"x)barx`

Where, byx = `("cov"("X", "Y"))/σ_x^2`

= `((sum(x_i - barx)(y_i - bary))/n)/(σ_x^2)`

= `(1170/10)/130` = 0.9

and a = `bary - barb_(yx)barx`

= 142 – (0.9)(53)

= 94.3

Therefore, regression equation of y on x is y = 94.3 + 0.9x

Now, the estimate of blood pressure of women with age 47 years is:

y = 94.3 + 0.9 × 4 7

= 136.6

shaalaa.com
Properties of Regression Coefficients
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2024-2025 (March) Model set 2 by shaalaa.com

संबंधित प्रश्‍न

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find Correlation coefficient between X and Y.


For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of Y for X = 50.


From the data of 7 pairs of observations on X and Y, following results are obtained.

∑(xi - 70) = - 35,  ∑(yi - 60) = - 7,

∑(xi - 70)2 = 2989,    ∑(yi - 60)2 = 476, 

∑(xi - 70)(yi - 60) = 1064

[Given: `sqrt0.7884` = 0.8879]

Obtain

  1. The line of regression of Y on X.
  2. The line regression of X on Y.
  3. The correlation coefficient between X and Y.

Bring out the inconsistency in the following:

bYX + bXY = 1.30 and r = 0.75 


Bring out the inconsistency in the following:

bYX = bXY = 1.50 and r = - 0.9 


Given the following information about the production and demand of a commodity obtain the two regression lines:

  X Y
Mean 85 90
S.D. 5 6

The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.


In a partially destroyed record, the following data are available: variance of X = 25, Regression equation of Y on X is 5y − x = 22 and regression equation of X on Y is 64x − 45y = 22 Find

  1. Mean values of X and Y
  2. Standard deviation of Y
  3. Coefficient of correlation between X and Y.

Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.


Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation.  [Given `sqrt0.375` = 0.61]


The equations of two regression lines are 10x − 4y = 80 and 10y − 9x = − 40 Find:

  1. `bar x and bar y`
  2. bYX and bXY
  3. If var (Y) = 36, obtain var (X)
  4. r

Choose the correct alternative:

If for a bivariate data, bYX = – 1.2 and bXY = – 0.3, then r = ______


Choose the correct alternative:

If the regression equation X on Y is 3x + 2y = 26, then bxy equal to 


Choose the correct alternative:

|byx + bxy| ≥ ______


Choose the correct alternative:

If r = 0.5, σx = 3, σy2 = 16, then bxy = ______


State whether the following statement is True or False:

If byx = 1.5 and bxy = `1/3` then r = `1/2`, the given data is consistent


The following data is not consistent: byx + bxy =1.3 and r = 0.75


State whether the following statement is True or False:

Regression coefficient of x on y is the slope of regression line of x on y


|bxy + byx| ≥ ______


The geometric mean of negative regression coefficients is ______


byx is the ______ of regression line of y on x


The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Find the value of the correlation coefficient `("Given"  sqrt(0.933) = 0.9667)`


Given the following information about the production and demand of a commodity.

Obtain the two regression lines:

  Production
(X)
Demand
(Y)
Mean 85 90
Variance 25 36

Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.


Mean of x = 53

Mean of y = 28

Regression coefficient of y on x = – 1.2

Regression coefficient of x on y = – 0.3

a. r = `square`

b. When x = 50,

`y - square = square (50 - square)`

∴ y = `square`

c. When y = 25,

`x - square = square (25 - square)`

∴ x = `square`


|bxy + byz| ≥ ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×