मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

In a partially destroyed record, the following data are available: variance of X = 25, Regression equation of Y on X is 5y − x = 22 and regression equation of X on Y is 64x − 45y = 22 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

In a partially destroyed record, the following data are available: variance of X = 25, Regression equation of Y on X is 5y − x = 22 and regression equation of X on Y is 64x − 45y = 22 Find

  1. Mean values of X and Y
  2. Standard deviation of Y
  3. Coefficient of correlation between X and Y.
बेरीज

उत्तर

Given, `sigma_"X"^2 = 25`

∴ `sigma_"X"` = 5

Regression equation of Y on X is

5y – x = 22

Regression equation of X on Y is

64x - 45y = 22

(i) Consider, the two regression equation

- x + 5y = 22       ....(i)

64x - 45y = 22    ....(ii) 

By (i) × + (ii), we get

- 9x + 45y = 198
+ 64x - 45y = 22 
55x       = 220

∴ x = 4

Substituting x = 4 in (i), we get

- 4 + 5y = 22

∴ 5y = 22 +  4

∴ y = `26/5 = 5.2`

Since the point of intersection of two regression lines is `(bar x, bar y)`,

`bar x` = mean value of X = 4 and

`bar y` = mean value of Y = 5.2

(ii) To find standard deviation of Y we should first find the coefficient of correlation between X and Y.

Regression equation of Y on X is

5y - x = 22

i.e., 5Y = X + 22

i.e., Y = `"X"/5 + 22/5`

Comparing it with Y = bYX X + a, we get

`"b"_"YX" = 1/5`

Now, regression equation of X on Y is

64x - 45y = 22

i.e., 64X - 45Y = 22

i.e., 64X = 45Y + 22

i.e., X = `"45Y"/64 + 22/64`

Comparing it with X = bXY Y + a', we get

`"b"_"XY" = 45/64`

r = `+-sqrt("b"_"XY" * "b"_"YX")`

`= +- sqrt((1/5)(45/64)) = +- sqrt(9/64) = +- 3/8`

Since bYX and bXY are positive,

r is also positive.

∴ r = `3/8= 0.375`

∴ `sigma_"Y"`= Standard deviation of Y = 0.375

(iii) The correlation coefficient of X and Y =

Now, `"b"_"YX" = ("r". sigma_"Y")/sigma_"X"`

∴ `1/5 = 3/8 xx sigma_"Y"/5`

∴ `sigma_"Y" = 8/3`

shaalaa.com
Properties of Regression Coefficients
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Linear Regression - Exercise 3.3 [पृष्ठ ५०]

APPEARS IN

संबंधित प्रश्‍न

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find Correlation coefficient between X and Y.


From the data of 7 pairs of observations on X and Y, following results are obtained.

∑(xi - 70) = - 35,  ∑(yi - 60) = - 7,

∑(xi - 70)2 = 2989,    ∑(yi - 60)2 = 476, 

∑(xi - 70)(yi - 60) = 1064

[Given: `sqrt0.7884` = 0.8879]

Obtain

  1. The line of regression of Y on X.
  2. The line regression of X on Y.
  3. The correlation coefficient between X and Y.

You are given the following information about advertising expenditure and sales.

  Advertisement expenditure
(₹ in lakh) (X)
Sales (₹ in lakh) (Y)
Arithmetic Mean 10 90
Standard Mean 3 12

Correlation coefficient between X and Y is 0.8

  1. Obtain the two regression equations.
  2. What is the likely sales when the advertising budget is ₹ 15 lakh?
  3. What should be the advertising budget if the company wants to attain sales target of ₹ 120 lakh?

Bring out the inconsistency in the following:

bYX = 2.6 and bXY = `1/2.6`


For a certain bivariate data

  X Y
Mean 25 20
S.D. 4 3

And r = 0.5. Estimate y when x = 10 and estimate x when y = 16


The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)

  Sales Adv. Exp.
Mean 40 6
S.D. 10 1.5

Coefficient of correlation between sales and advertisement expenditure is 0.9.

What should be the advertisement expenditure if the firm proposes a sales target ₹ 60 crores?


For certain bivariate data the following information is available.

  X Y
Mean 13 17
S.D. 3 2

Correlation coefficient between x and y is 0.6. estimate x when y = 15 and estimate y when x = 10.


For 50 students of a class, the regression equation of marks in statistics (X) on the marks in accountancy (Y) is 3y − 5x + 180 = 0.  The variance of marks in statistics is `(9/16)^"th"` of the variance of marks in accountancy. Find the correlation coefficient between marks in two subjects.


The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.


Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.


The following results were obtained from records of age (X) and systolic blood pressure (Y) of a group of 10 men.

  X Y
Mean 50 140
Variance 150 165

and `sum (x_i - bar x)(y_i - bar y) = 1120`

Find the prediction of blood pressure of a man of age 40 years.


Choose the correct alternative:

Find the value of the covariance between X and Y, if the regression coefficient of Y on X is 3.75 and σx = 2, σy = 8


Choose the correct alternative:

bxy and byx are ______


Corr(x, x) = 1


|bxy + byx| ≥ ______


Arithmetic mean of positive values of regression coefficients is greater than or equal to ______


Given the following information about the production and demand of a commodity.

Obtain the two regression lines:

  Production
(X)
Demand
(Y)
Mean 85 90
Variance 25 36

Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.


If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y) 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×