Advertisements
Advertisements
Question
x | y | xy | x2 | y2 |
6 | 9 | 54 | 36 | 81 |
2 | 11 | 22 | 4 | 121 |
10 | 5 | 50 | 100 | 25 |
4 | 8 | 32 | 16 | 64 |
8 | 7 | `square` | 64 | 49 |
Total = 30 | Total = 40 | Total = `square` | Total = 220 | Total = `square` |
bxy = `square/square`
byx = `square/square`
∴ Regression equation of x on y is `square`
∴ Regression equation of y on x is `square`
Solution
x | y | xy | x2 | y2 |
6 | 9 | 54 | 36 | 81 |
2 | 11 | 22 | 4 | 121 |
10 | 5 | 50 | 100 | 25 |
4 | 8 | 32 | 16 | 64 |
8 | 7 | 56 | 64 | 49 |
Total = 30 | Total = 40 | Total = 214 | Total = 220 | Total = 340 |
From the table, we have
n = 5, ∑x = 30, ∑y = 40, ∑xy = 214, ∑x2 = 220, ∑y2 = 340
`barx = (sumx_"i")/"n" = 30/5` = 6
`bary = (sumy_"i")/"n" = 40/5` = 8
bxy = `(sumxy - "n" bar(x) bar(y))/(sumy^2 - "n" bary^2)`
= `(214 - 5 xx 6 xx 8)/(340 - 5(8)^2`
= `(214 - 240)/(340 - 320)`
= `(-26)/20`
bxy = `(-13)/10`
byx = `(sumxy - "n" bar(x) bar(y))/(sumx^2 - "n" barx^2)`
= `(214 - 5 xx 6 xx 8)/(220 - 5(6)^2`
= `(214 - 240)/(220 - 180)`
= `(-26)/40`
byx = `(-13)/20`
∴ Regression equation of x on y is x = – 1.3y + 16.4
∴ Regression equation of y on x is y = – 0.65x + 11.9
APPEARS IN
RELATED QUESTIONS
Bring out the inconsistency in the following:
bYX = bXY = 1.50 and r = - 0.9
An inquiry of 50 families to study the relationship between expenditure on accommodation (₹ x) and expenditure on food and entertainment (₹ y) gave the following results:
∑ x = 8500, ∑ y = 9600, σX = 60, σY = 20, r = 0.6
Estimate the expenditure on food and entertainment when expenditure on accommodation is Rs 200.
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
What should be the advertisement expenditure if the firm proposes a sales target ₹ 60 crores?
From the two regression equations, find r, `bar x and bar y`. 4y = 9x + 15 and 25x = 4y + 17
In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:
Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information
- The mean values of X and Y.
- Correlation coefficient between X and Y.
- Standard deviation of Y.
For 50 students of a class, the regression equation of marks in statistics (X) on the marks in accountancy (Y) is 3y − 5x + 180 = 0. The variance of marks in statistics is `(9/16)^"th"` of the variance of marks in accountancy. Find the correlation coefficient between marks in two subjects.
For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.
The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.
The following results were obtained from records of age (X) and systolic blood pressure (Y) of a group of 10 men.
X | Y | |
Mean | 50 | 140 |
Variance | 150 | 165 |
and `sum (x_i - bar x)(y_i - bar y) = 1120`
Find the prediction of blood pressure of a man of age 40 years.
Choose the correct alternative:
If for a bivariate data, bYX = – 1.2 and bXY = – 0.3, then r = ______
Choose the correct alternative:
|byx + bxy| ≥ ______
Choose the correct alternative:
If r = 0.5, σx = 3, σy2 = 16, then bxy = ______
State whether the following statement is True or False:
If bxy < 0 and byx < 0 then ‘r’ is > 0
The value of product moment correlation coefficient between x and x is ______
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Find the value of the correlation coefficient
x | y | `x - barx` | `y - bary` | `(x - barx)(y - bary)` | `(x - barx)^2` | `(y - bary)^2` |
1 | 5 | – 2 | – 4 | 8 | 4 | 16 |
2 | 7 | – 1 | – 2 | `square` | 1 | 4 |
3 | 9 | 0 | 0 | 0 | 0 | 0 |
4 | 11 | 1 | 2 | 2 | 4 | 4 |
5 | 13 | 2 | 4 | 8 | 1 | 16 |
Total = 15 | Total = 45 | Total = 0 | Total = 0 | Total = `square` | Total = 10 | Total = 40 |
Mean of x = `barx = square`
Mean of y = `bary = square`
bxy = `square/square`
byx = `square/square`
Regression equation of x on y is `(x - barx) = "b"_(xy) (y - bary)`
∴ Regression equation x on y is `square`
Regression equation of y on x is `(y - bary) = "b"_(yx) (x - barx)`
∴ Regression equation of y on x is `square`
The regression equation of y on x is 2x – 5y + 60 = 0
Mean of x = 18
`2 square - 5 bary + 60` = 0
∴ `bary = square`
`sigma_x : sigma_y` = 3 : 2
∴ byx = `square/square`
∴ byx = `square/square`
∴ r = `square`
If byx > 1 then bxy is _______.
For a bivariate data:
`sum(x - overlinex)^2` = 1200, `sum(y - overliney)^2` = 300, `sum(x - overlinex)(y - overliney)` = – 250
Find:
- byx
- bxy
- Correlation coefficient between x and y.