Advertisements
Advertisements
Question
State whether the following statement is True or False:
If bxy < 0 and byx < 0 then ‘r’ is > 0
Options
True
False
Solution
False
APPEARS IN
RELATED QUESTIONS
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of X for Y = 25.
Bring out the inconsistency in the following:
bYX + bXY = 1.30 and r = 0.75
Bring out the inconsistency in the following:
bYX = bXY = 1.50 and r = - 0.9
Given the following information about the production and demand of a commodity obtain the two regression lines:
X | Y | |
Mean | 85 | 90 |
S.D. | 5 | 6 |
The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.
For certain bivariate data the following information is available.
X | Y | |
Mean | 13 | 17 |
S.D. | 3 | 2 |
Correlation coefficient between x and y is 0.6. estimate x when y = 15 and estimate y when x = 10.
From the two regression equations, find r, `bar x and bar y`. 4y = 9x + 15 and 25x = 4y + 17
The equations of two regression lines are
2x + 3y − 6 = 0
and 3x + 2y − 12 = 0 Find
- Correlation coefficient
- `sigma_"X"/sigma_"Y"`
For a bivariate data: `bar x = 53, bar y = 28,` bYX = - 1.5 and bXY = - 0.2. Estimate Y when X = 50.
The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.
Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.
Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation. [Given `sqrt0.375` = 0.61]
The two regression lines between height (X) in inches and weight (Y) in kgs of girls are,
4y − 15x + 500 = 0
and 20x − 3y − 900 = 0
Find the mean height and weight of the group. Also, estimate the weight of a girl whose height is 70 inches.
Choose the correct alternative:
If for a bivariate data, bYX = – 1.2 and bXY = – 0.3, then r = ______
Choose the correct alternative:
If byx < 0 and bxy < 0, then r is ______
Choose the correct alternative:
Both the regression coefficients cannot exceed 1
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Find the value of the correlation coefficient
If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y)
Mean of x = 53
Mean of y = 28
Regression coefficient of y on x = – 1.2
Regression coefficient of x on y = – 0.3
a. r = `square`
b. When x = 50,
`y - square = square (50 - square)`
∴ y = `square`
c. When y = 25,
`x - square = square (25 - square)`
∴ x = `square`
If byx > 1 then bxy is _______.
The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 women.
x | y | |
Mean | 53 | 142 |
Variance | 130 | 165 |
`sum(x_i - barx)(y_i - bary)` = 1170