Advertisements
Advertisements
Question
The two regression lines between height (X) in inches and weight (Y) in kgs of girls are,
4y − 15x + 500 = 0
and 20x − 3y − 900 = 0
Find the mean height and weight of the group. Also, estimate the weight of a girl whose height is 70 inches.
Solution
Given, X = Height (in inches), Y = weight (in Kg)
The equation of regression are
4y - 15x + 500 = 0
i.e., –15x + 4y = – 500 …(i)
and 20x – 3y – 900 = 0
i.e., 20x – 3y = 900 …(ii)
By 3 × (i) + 4 × (ii), we get
- 45x + 12y = - 1500
+ 80x - 12y = 3600
35x = 2100
∴ x = 60
Substituting x = 60 in (i), we get
–15(60) + 4y = –500
∴ 4y = 900 – 500
∴ y = 100
Since the point of intersection of two regression lines is `bar x, bar y`,
`bar x` = mean height of the group = 60 inches, and
`bar y` = mean weight of the group = 100 kg.
Let 4y – 15x + 500 = 0 be the regression equation of Y on X.
∴ The equation becomes 4y = 15x – 500
i.e., Y = `15/4"X" - 500/4` ...(i)
Comparing it with Y = bYX X + a, we get
∴ `"b"_"YX" = 15/4`
∴ Now, other equation 20x – 3y – 900 = 0 be the regression equation of X on Y
∴The equation becomes 20x – 3y – 900 = 0
i.e., 20x = 3y + 900
X = `3/20"Y" + 900/20`
Comparing it with X = bXY Y + a',
∴ `"b"_"XY" = 3/20`
Now, `"b"_"YX" * "b"_"XY" = 15/4 * 3/20 = 0.5625`
i.e., bXY . bYX < 1
∴ Assumption of regression equations is true.
Now, substituting x = 70 in (i) we get
y = `15/4 xx 70 - 500/4 = (1050 - 500)/4 = 550/4 = 137.5`
∴ Weight of girl having height 70 inches is 137.5 kg
APPEARS IN
RELATED QUESTIONS
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of X for Y = 25.
From the data of 7 pairs of observations on X and Y, following results are obtained.
∑(xi - 70) = - 35, ∑(yi - 60) = - 7,
∑(xi - 70)2 = 2989, ∑(yi - 60)2 = 476,
∑(xi - 70)(yi - 60) = 1064
[Given: `sqrt0.7884` = 0.8879]
Obtain
- The line of regression of Y on X.
- The line regression of X on Y.
- The correlation coefficient between X and Y.
You are given the following information about advertising expenditure and sales.
Advertisement expenditure (₹ in lakh) (X) |
Sales (₹ in lakh) (Y) | |
Arithmetic Mean | 10 | 90 |
Standard Mean | 3 | 12 |
Correlation coefficient between X and Y is 0.8
- Obtain the two regression equations.
- What is the likely sales when the advertising budget is ₹ 15 lakh?
- What should be the advertising budget if the company wants to attain sales target of ₹ 120 lakh?
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
Estimate the likely sales for a proposed advertisement expenditure of ₹ 10 crores.
For certain bivariate data the following information is available.
X | Y | |
Mean | 13 | 17 |
S.D. | 3 | 2 |
Correlation coefficient between x and y is 0.6. estimate x when y = 15 and estimate y when x = 10.
In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:
Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information
- The mean values of X and Y.
- Correlation coefficient between X and Y.
- Standard deviation of Y.
If the two regression lines for a bivariate data are 2x = y + 15 (x on y) and 4y = 3x + 25 (y on x), find
- `bar x`,
- `bar y`,
- bYX
- bXY
- r [Given `sqrt0.375` = 0.61]
If bYX = − 0.6 and bXY = − 0.216, then find correlation coefficient between X and Y. Comment on it.
Choose the correct alternative:
If the regression equation X on Y is 3x + 2y = 26, then bxy equal to
Choose the correct alternative:
Find the value of the covariance between X and Y, if the regression coefficient of Y on X is 3.75 and σx = 2, σy = 8
State whether the following statement is True or False:
If byx = 1.5 and bxy = `1/3` then r = `1/2`, the given data is consistent
State whether the following statement is True or False:
If bxy < 0 and byx < 0 then ‘r’ is > 0
State whether the following statement is True or False:
If u = x – a and v = y – b then bxy = buv
Arithmetic mean of positive values of regression coefficients is greater than or equal to ______
byx is the ______ of regression line of y on x
The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 women.
x | y | |
Mean | 53 | 142 |
Variance | 130 | 165 |
`sum(x_i - barx)(y_i - bary)` = 1170
For a bivariate data:
`sum(x - overlinex)^2` = 1200, `sum(y - overliney)^2` = 300, `sum(x - overlinex)(y - overliney)` = – 250
Find:
- byx
- bxy
- Correlation coefficient between x and y.