Advertisements
Advertisements
Question
The regression equation of y on x is 2x – 5y + 60 = 0
Mean of x = 18
`2 square - 5 bary + 60` = 0
∴ `bary = square`
`sigma_x : sigma_y` = 3 : 2
∴ byx = `square/square`
∴ byx = `square/square`
∴ r = `square`
Solution
The regression equation of y on x is 2x – 5y + 60 = 0.
Mean of x = 18
`2barx - 5bary + 60` = 0
`2 xx 8 - 5bary + 60` = 0
∴ `5 bary` = 36 + 60
∴ `5 bary` = 96
∴ `bary` = 19.2
`sigma_x : sigma_y` = 3 : 2
2x – 5y + 60 = 0 ⇒ y = 0.4x + 12
∴ byx = `2/5`
∴ byx = `("r"sigma_y)/sigma_`
∴ 0.4 = `"r"xx 2/3`
∴ r = `0.4 xx 3/2`
∴ r = 0.6
APPEARS IN
RELATED QUESTIONS
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of X for Y = 25.
Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from respective means is 136 and 150. The sum of the product of deviations from respective means is 123. Obtain the equation of the line of regression of X on Y.
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
What should be the advertisement expenditure if the firm proposes a sales target ₹ 60 crores?
For certain bivariate data the following information is available.
X | Y | |
Mean | 13 | 17 |
S.D. | 3 | 2 |
Correlation coefficient between x and y is 0.6. estimate x when y = 15 and estimate y when x = 10.
The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.
The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find `bar x, bar y`, r.
Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.
Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation. [Given `sqrt0.375` = 0.61]
Choose the correct alternative:
If for a bivariate data, bYX = – 1.2 and bXY = – 0.3, then r = ______
Choose the correct alternative:
|byx + bxy| ≥ ______
Choose the correct alternative:
If r = 0.5, σx = 3, `σ_"y"^2` = 16, then byx = ______
Choose the correct alternative:
Both the regression coefficients cannot exceed 1
State whether the following statement is True or False:
Regression coefficient of x on y is the slope of regression line of x on y
|bxy + byx| ≥ ______
The geometric mean of negative regression coefficients is ______
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
ADVERTISEMENT (x) (₹ in lakhs) |
DEMAND (y) (₹ in lakhs) |
|
Mean | 10 | 90 |
Variance | 9 | 144 |
Coefficient of correlation between x and y is 0.8.
What should be the advertising budget if the company wants to attain the sales target of ₹ 150 lakhs?
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Find the value of the correlation coefficient
bxy . byx = ______.
|bxy + byz| ≥ ______.