हिंदी

The equations of two lines of regression are 3x + 2y – 26 = 0 and 6x + y – 31 = 0. Find variance of x if variance of y is 36 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The equations of two lines of regression are 3x + 2y – 26 = 0 and 6x + y – 31 = 0. Find variance of x if variance of y is 36

योग

उत्तर

Here, bxy = `(-1)/6` and byx = `(-3)/2`

∴ r = `sqrt((-1)/6 xx (-3)/2`

= – 0.5

Given, Var (y) = 36, i.e., σy2 = 36 

∴ σ= 6

Since bxy = `"r" xx sigma_x/sigma_y` 

`(-1)/6 = - 0.5 xx sigma_x/6`

∴ σx = `(-6)/(-6 xx 0.5)` = 2

∴ σx2 = Var (x) = 4

shaalaa.com
Properties of Regression Coefficients
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.3: Linear Regression - Q.4

संबंधित प्रश्न

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of Y for X = 50.


Bring out the inconsistency in the following:

bYX + bXY = 1.30 and r = 0.75 


Bring out the inconsistency in the following:

bYX = 1.9 and bXY = - 0.25


An inquiry of 50 families to study the relationship between expenditure on accommodation (₹ x) and expenditure on food and entertainment (₹ y) gave the following results: 

∑ x = 8500, ∑ y = 9600, σX = 60, σY = 20, r = 0.6

Estimate the expenditure on food and entertainment when expenditure on accommodation is Rs 200.


The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)

  Sales Adv. Exp.
Mean 40 6
S.D. 10 1.5

Coefficient of correlation between sales and advertisement expenditure is 0.9.

What should be the advertisement expenditure if the firm proposes a sales target ₹ 60 crores?


In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:

Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information

  1. The mean values of X and Y.
  2. Correlation coefficient between X and Y.
  3. Standard deviation of Y.

The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.


The two regression lines between height (X) in inches and weight (Y) in kgs of girls are,
4y − 15x + 500 = 0
and 20x − 3y − 900 = 0
Find the mean height and weight of the group. Also, estimate the weight of a girl whose height is 70 inches.


Find the line of regression of X on Y for the following data:

n = 8, `sum(x_i - bar x)^2 = 36, sum(y_i - bar y)^2 = 44, sum(x_i - bar x)(y_i - bar y) = 24`


Choose the correct alternative:

If byx < 0 and bxy < 0, then r is ______


Choose the correct alternative:

Both the regression coefficients cannot exceed 1


State whether the following statement is True or False:

If byx = 1.5 and bxy = `1/3` then r = `1/2`, the given data is consistent


State whether the following statement is True or False:

Corr(x, x) = 0


byx is the ______ of regression line of y on x


The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Find the value of the correlation coefficient `("Given"  sqrt(0.933) = 0.9667)`


Given the following information about the production and demand of a commodity.

Obtain the two regression lines:

  Production
(X)
Demand
(Y)
Mean 85 90
Variance 25 36

Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.


If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y) 


The regression equation of y on x is 2x – 5y + 60 = 0

Mean of x = 18

`2 square -  5 bary + 60` = 0

∴ `bary = square`

`sigma_x : sigma_y` = 3 : 2

∴ byx = `square/square`

∴ byx = `square/square`

∴ r = `square`


The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 women.

  x y
Mean 53 142
Variance 130 165

`sum(x_i - barx)(y_i - bary)` = 1170


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×