हिंदी

Find the line of regression of X on Y for the following data: n = 8, ∑(xi-x¯)2=36,∑(yi-y¯)2=44,∑(xi-x¯)(yi-y¯)=24 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the line of regression of X on Y for the following data:

n = 8, `sum(x_i - bar x)^2 = 36, sum(y_i - bar y)^2 = 44, sum(x_i - bar x)(y_i - bar y) = 24`

योग

उत्तर

Given, n = 8, `sum(x_i - bar x)^2 = 36`

`sum(y_i - bar y)^2 = 44, sum(x_i - bar x)(y_i - bar y) = 24`

∴ `"b"_"XY" = (sum(x_i - bar x)(y_i - bar y))/(sum(y_i - bar y)^2) = 24/44 = 6/11`

Now, the regression equation of X on Y is

`("X" - bar x) = "b"_"XY" ("Y" - bar y)`

i.e., `("X" - bar x) = 6/11 ("Y" - bar y)`

shaalaa.com
Properties of Regression Coefficients
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Linear Regression - Miscellaneous Exercise 3 [पृष्ठ ५४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Linear Regression
Miscellaneous Exercise 3 | Q 4.08 | पृष्ठ ५४

संबंधित प्रश्न

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find Correlation coefficient between X and Y.


For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of X for Y = 25.


Given the following information about the production and demand of a commodity obtain the two regression lines:

  X Y
Mean 85 90
S.D. 5 6

The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.


Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from respective means is 136 and 150. The sum of the product of deviations from respective means is 123. Obtain the equation of the line of regression of X on Y.


For certain bivariate data the following information is available.

  X Y
Mean 13 17
S.D. 3 2

Correlation coefficient between x and y is 0.6. estimate x when y = 15 and estimate y when x = 10.


In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:

Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information

  1. The mean values of X and Y.
  2. Correlation coefficient between X and Y.
  3. Standard deviation of Y.

For 50 students of a class, the regression equation of marks in statistics (X) on the marks in accountancy (Y) is 3y − 5x + 180 = 0.  The variance of marks in statistics is `(9/16)^"th"` of the variance of marks in accountancy. Find the correlation coefficient between marks in two subjects.


The equations of two regression lines are
2x + 3y − 6 = 0
and 3x + 2y − 12 = 0 Find 

  1. Correlation coefficient
  2. `sigma_"X"/sigma_"Y"`

The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.


For certain X and Y series, which are correlated the two lines of regression are 10y = 3x + 170 and 5x + 70 = 6y. Find the correlation coefficient between them. Find the mean values of X and Y.


The following results were obtained from records of age (X) and systolic blood pressure (Y) of a group of 10 men.

  X Y
Mean 50 140
Variance 150 165

and `sum (x_i - bar x)(y_i - bar y) = 1120`

Find the prediction of blood pressure of a man of age 40 years.


Choose the correct alternative:

Find the value of the covariance between X and Y, if the regression coefficient of Y on X is 3.75 and σx = 2, σy = 8


State whether the following statement is True or False: 

If u = x – a and v = y – b then bxy = buv 


State whether the following statement is True or False:

Corr(x, x) = 0


If u = `(x - "a")/"c"` and v = `(y - "b")/"d"`, then bxy = ______ 


If the sign of the correlation coefficient is negative, then the sign of the slope of the respective regression line is ______


Arithmetic mean of positive values of regression coefficients is greater than or equal to ______


For a certain bivariate data of a group of 10 students, the following information gives the internal marks obtained in English (X) and Hindi (Y):

  X Y
Mean 13 17
Standard Deviation 3 2

If r = 0.6, Estimate x when y = 16 and y when x = 10


Mean of x = 25

Mean of y = 20

`sigma_x` = 4

`sigma_y` = 3

r = 0.5

byx = `square`

bxy = `square`

when x = 10,

`y - square = square (10 - square)`

∴ y = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×