हिंदी

Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from respective means is 136 and 150. The sum of the product of deviations from respective means is 123. Obtain the equation of the line of regression of X on Y.

योग

उत्तर

Given, n = 15, `bar x = 25, bar y = 18`,

`sum (x_i - bar x)^2 = 136, sum(y_i - bar y)^2 = 150,`

`sum (x_i - bar x)(y_i - bar y)` = 123

Now,  `"b"_"XY" = (sum (x_i - bar x)(y_i - bary))/(sum(y_i - bary)) = 123/150` = 0.82

Also, `"a"' = bar x - "b"_"XY"  bar y`

= 25 - 0.82 × 18 = 25 - 14.76 = 10.24

∴ The regression equation of X on Y is

X = a' + bXY Y

∴ X = 10.24 + 0.82Y 

shaalaa.com
Properties of Regression Coefficients
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Linear Regression - Exercise 3.2 [पृष्ठ ४७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Linear Regression
Exercise 3.2 | Q 6 | पृष्ठ ४७

संबंधित प्रश्न

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find Correlation coefficient between X and Y.


From the data of 7 pairs of observations on X and Y, following results are obtained.

∑(xi - 70) = - 35,  ∑(yi - 60) = - 7,

∑(xi - 70)2 = 2989,    ∑(yi - 60)2 = 476, 

∑(xi - 70)(yi - 60) = 1064

[Given: `sqrt0.7884` = 0.8879]

Obtain

  1. The line of regression of Y on X.
  2. The line regression of X on Y.
  3. The correlation coefficient between X and Y.

Bring out the inconsistency in the following:

bYX = 1.9 and bXY = - 0.25


For a certain bivariate data

  X Y
Mean 25 20
S.D. 4 3

And r = 0.5. Estimate y when x = 10 and estimate x when y = 16


Given the following information about the production and demand of a commodity obtain the two regression lines:

  X Y
Mean 85 90
S.D. 5 6

The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.


Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.


Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation.  [Given `sqrt0.375` = 0.61]


The two regression lines between height (X) in inches and weight (Y) in kgs of girls are,
4y − 15x + 500 = 0
and 20x − 3y − 900 = 0
Find the mean height and weight of the group. Also, estimate the weight of a girl whose height is 70 inches.


If bYX = − 0.6 and bXY = − 0.216, then find correlation coefficient between X and Y. Comment on it.


Choose the correct alternative:

If the regression equation X on Y is 3x + 2y = 26, then bxy equal to 


Choose the correct alternative:

If byx < 0 and bxy < 0, then r is ______


Choose the correct alternative:

Both the regression coefficients cannot exceed 1


State whether the following statement is True or False:

If byx = 1.5 and bxy = `1/3` then r = `1/2`, the given data is consistent


The following data is not consistent: byx + bxy =1.3 and r = 0.75


State whether the following statement is True or False: 

If u = x – a and v = y – b then bxy = buv 


If u = `(x - "a")/"c"` and v = `(y - "b")/"d"`, then bxy = ______ 


If the sign of the correlation coefficient is negative, then the sign of the slope of the respective regression line is ______


The geometric mean of negative regression coefficients is ______


For a certain bivariate data of a group of 10 students, the following information gives the internal marks obtained in English (X) and Hindi (Y):

  X Y
Mean 13 17
Standard Deviation 3 2

If r = 0.6, Estimate x when y = 16 and y when x = 10


x y `x - barx` `y - bary` `(x - barx)(y - bary)` `(x - barx)^2` `(y - bary)^2`
1 5 – 2 – 4 8 4 16
2 7 – 1 – 2 `square` 1 4
3 9 0 0 0 0 0
4 11 1 2 2 4 4
5 13 2 4 8 1 16
Total = 15 Total = 45 Total = 0 Total = 0 Total = `square` Total = 10 Total = 40

Mean of x = `barx = square`

Mean of y = `bary = square`

bxy = `square/square`

byx = `square/square`

Regression equation of x on y is `(x - barx) = "b"_(xy)  (y - bary)`

∴ Regression equation x on y is `square`

Regression equation of y on x is `(y - bary) = "b"_(yx)  (x - barx)`

∴ Regression equation of y on x is `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×