हिंदी

Given the following information about the production and demand of a commodity obtain the two regression lines: Coefficient of correlation between X and Y is 0.6. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Given the following information about the production and demand of a commodity obtain the two regression lines:

  X Y
Mean 85 90
S.D. 5 6

The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.

योग

उत्तर

Given, `bar x = 85, bar y = 90, sigma_"X" = 5, sigma_"Y" = 6`, r =0.6

`"b"_"YX" = "r" sigma_"Y"/sigma_"X" = 0.6 xx 6/5 = 0.72`

`"b"_"XY" = "r" sigma_"X"/sigma_"Y" = 0.6 xx 5/6 = 0.5`

The regression equation of Y on X is

`("Y" - bar y) = "b"_"YX" ("X" - bar x)`

(Y - 90) = 0.72 (X - 85)

Y - 90 = 0.72 X - 61.2

Y = 0.72X - 61.2 + 90

Y = 28.8 + 0.72 X           ....(i)

The regression equation of X on Y is

`("X" - bar x) = "b"_"XY" ("Y" - bar y)`

(X - 85) = 0.5(Y - 90)

X - 85 = 0.5 Y - 45

X = 0.5 Y - 45 + 85

X = 40 + 0.5Y            ....(ii)

For Y = 100, from equation (ii) we get

X = 40 + 0.5(100) = 40 + 50 = 90

∴ The production is 90 when demand is 100.

shaalaa.com

Notes

The answer in the textbook is incorrect.

Properties of Regression Coefficients
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Linear Regression - Exercise 3.2 [पृष्ठ ४८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Linear Regression
Exercise 3.2 | Q 8 | पृष्ठ ४८

संबंधित प्रश्न

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of Y for X = 50.


From the data of 7 pairs of observations on X and Y, following results are obtained.

∑(xi - 70) = - 35,  ∑(yi - 60) = - 7,

∑(xi - 70)2 = 2989,    ∑(yi - 60)2 = 476, 

∑(xi - 70)(yi - 60) = 1064

[Given: `sqrt0.7884` = 0.8879]

Obtain

  1. The line of regression of Y on X.
  2. The line regression of X on Y.
  3. The correlation coefficient between X and Y.

Bring out the inconsistency in the following:

bYX = 1.9 and bXY = - 0.25


Bring out the inconsistency in the following:

bYX = 2.6 and bXY = `1/2.6`


From the two regression equations, find r, `bar x and bar y`. 4y = 9x + 15 and 25x = 4y + 17


For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.


The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find `bar x, bar y`, r.


Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation.  [Given `sqrt0.375` = 0.61]


Choose the correct alternative:

If byx < 0 and bxy < 0, then r is ______


State whether the following statement is True or False:

If byx = 1.5 and bxy = `1/3` then r = `1/2`, the given data is consistent


The following data is not consistent: byx + bxy =1.3 and r = 0.75


Arithmetic mean of positive values of regression coefficients is greater than or equal to ______


Given the following information about the production and demand of a commodity.
Obtain the two regression lines:

  ADVERTISEMENT (x)
(₹ in lakhs)
DEMAND (y)
(₹ in lakhs)
Mean 10 90
Variance 9 144

Coefficient of correlation between x and y is 0.8.
What should be the advertising budget if the company wants to attain the sales target of ₹ 150 lakhs?


For a certain bivariate data of a group of 10 students, the following information gives the internal marks obtained in English (X) and Hindi (Y):

  X Y
Mean 13 17
Standard Deviation 3 2

If r = 0.6, Estimate x when y = 16 and y when x = 10


Mean of x = 53

Mean of y = 28

Regression coefficient of y on x = – 1.2

Regression coefficient of x on y = – 0.3

a. r = `square`

b. When x = 50,

`y - square = square (50 - square)`

∴ y = `square`

c. When y = 25,

`x - square = square (25 - square)`

∴ x = `square`


x y xy x2 y2
6 9 54 36 81
2 11 22 4 121
10 5 50 100 25
4 8 32 16 64
8 7 `square` 64 49
Total = 30 Total = 40 Total = `square` Total = 220 Total = `square`

bxy = `square/square`

byx = `square/square`

∴ Regression equation of x on y is `square`

∴ Regression equation of y on x is `square`


For a bivariate data:

`sum(x - overlinex)^2` = 1200, `sum(y - overliney)^2` = 300, `sum(x - overlinex)(y - overliney)` = – 250

Find: 

  1. byx
  2. bxy
  3. Correlation coefficient between x and y.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×