हिंदी

For a certain bivariate data of a group of 10 students, the following information gives the internal marks obtained in English (X) and Hindi (Y): X Y Mean 13 17 Standard Deviation 3 2 If r = 0.6, es - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For a certain bivariate data of a group of 10 students, the following information gives the internal marks obtained in English (X) and Hindi (Y):

  X Y
Mean 13 17
Standard Deviation 3 2

If r = 0.6, Estimate x when y = 16 and y when x = 10

योग

उत्तर

Given, `barx` = 13, `bary` = 17, `sigma_x` = 3, `sigma_y` = 2, r = 0.6

byx = `"r" sigma_y/sigma_x = 0.6 xx 2/3` = 0.4

bxy = `"r" sigma_x/sigma_y = 0.6 xx 3/2` = 0.9

The regression equation of X on Y is given by `("X" - barx) = "b"_(xy)  ("Y" - bary)`

(X – 13) = 0.9(Y – 17)

X – 13 = 0.9Y – 15.3

X = 0.9Y – 15.3 + 13

X = – 2.3 + 0.9Y    ......(i)

For Y = 16, from equation (i) we get

X = – 2.3 + (0.9)(16)

= – 2.3 + 14.4

= 12.1

The regression equation of Y on X is given by `("Y" - bary) = "b"_(yx)  ("X" - barx)`

(Y – 17) = 0.4(X – 13)

Y – 17 = 0.4X – 5.2

Y = 0.4X – 5.2 + 17

Y = 11.8 + 0.4X    .....(ii)

For X = 10, from equation (ii) we get

Y = 11.8 + 0.4(10)

= 11.8 + 4

= 15.8

shaalaa.com
Properties of Regression Coefficients
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.3: Linear Regression - Q.4

संबंधित प्रश्न

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find Correlation coefficient between X and Y.


For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of Y for X = 50.


For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of X for Y = 25.


You are given the following information about advertising expenditure and sales.

  Advertisement expenditure
(₹ in lakh) (X)
Sales (₹ in lakh) (Y)
Arithmetic Mean 10 90
Standard Mean 3 12

Correlation coefficient between X and Y is 0.8

  1. Obtain the two regression equations.
  2. What is the likely sales when the advertising budget is ₹ 15 lakh?
  3. What should be the advertising budget if the company wants to attain sales target of ₹ 120 lakh?

Bring out the inconsistency in the following:

bYX = bXY = 1.50 and r = - 0.9 


Bring out the inconsistency in the following:

bYX = 2.6 and bXY = `1/2.6`


Given the following information about the production and demand of a commodity obtain the two regression lines:

  X Y
Mean 85 90
S.D. 5 6

The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.


The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)

  Sales Adv. Exp.
Mean 40 6
S.D. 10 1.5

Coefficient of correlation between sales and advertisement expenditure is 0.9.

What should be the advertisement expenditure if the firm proposes a sales target ₹ 60 crores?


From the two regression equations, find r, `bar x and bar y`. 4y = 9x + 15 and 25x = 4y + 17


In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:

Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information

  1. The mean values of X and Y.
  2. Correlation coefficient between X and Y.
  3. Standard deviation of Y.

For a bivariate data: `bar x = 53, bar y = 28,` bYX = - 1.5 and bXY = - 0.2. Estimate Y when X = 50.


In a partially destroyed record, the following data are available: variance of X = 25, Regression equation of Y on X is 5y − x = 22 and regression equation of X on Y is 64x − 45y = 22 Find

  1. Mean values of X and Y
  2. Standard deviation of Y
  3. Coefficient of correlation between X and Y.

The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find `bar x, bar y`, r.


For certain X and Y series, which are correlated the two lines of regression are 10y = 3x + 170 and 5x + 70 = 6y. Find the correlation coefficient between them. Find the mean values of X and Y.


Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation.  [Given `sqrt0.375` = 0.61]


Choose the correct alternative:

bxy and byx are ______


The following data is not consistent: byx + bxy =1.3 and r = 0.75


State whether the following statement is True or False:

Corr(x, x) = 0


If the sign of the correlation coefficient is negative, then the sign of the slope of the respective regression line is ______


The value of product moment correlation coefficient between x and x is ______


Arithmetic mean of positive values of regression coefficients is greater than or equal to ______


The geometric mean of negative regression coefficients is ______


Given the following information about the production and demand of a commodity.

Obtain the two regression lines:

  Production
(X)
Demand
(Y)
Mean 85 90
Variance 25 36

Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.


The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Find the value of the correlation coefficient


If byx > 1 then bxy is _______.


The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 women.

  x y
Mean 53 142
Variance 130 165

`sum(x_i - barx)(y_i - bary)` = 1170


For a bivariate data:

`sum(x - overlinex)^2` = 1200, `sum(y - overliney)^2` = 300, `sum(x - overlinex)(y - overliney)` = – 250

Find: 

  1. byx
  2. bxy
  3. Correlation coefficient between x and y.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×