हिंदी

The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores) What should be the advertisement expenditure if the firm proposes a sales target ₹ 60 crores? - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)

  Sales Adv. Exp.
Mean 40 6
S.D. 10 1.5

Coefficient of correlation between sales and advertisement expenditure is 0.9.

What should be the advertisement expenditure if the firm proposes a sales target ₹ 60 crores?

योग

उत्तर

Let X = Sales,

Y = Advertisement expenditure

Given, `bar x = 40, bar y = 6, sigma_"X" = 10, sigma_"Y" = 1.5`, r = 0.9

`"b"_"XY" = "r" sigma_"X"/sigma_"Y" = 0.9 xx 10/1.5 = 6`

`"b"_"YX" = "r" sigma_"Y"/sigma_"X" = 0.9 xx 1.5/10 = 0.135`

The regression equation of Y on X is

`("Y" - bar y) = "b"_"YX" ("X" - bar x)`

∴ (Y - 6) = 0.135(X - 40)

∴ Y - 6 = 0.135X - 5.4

∴ Y = 0.135X - 5.4 + 6

∴ Y = 0.135X + 0.6

For X = 60, 

Y = 0.135(60) + 0.6 = 8.1 + 0.6 = 8.7

∴ The advertisement expenditure should be ₹ 8.7 crores if the firm proposes a sales target ₹ 60 crores

shaalaa.com
Properties of Regression Coefficients
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Linear Regression - Exercise 3.2 [पृष्ठ ४८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Linear Regression
Exercise 3.2 | Q 11.2 | पृष्ठ ४८

संबंधित प्रश्न

Bring out the inconsistency in the following:

bYX + bXY = 1.30 and r = 0.75 


Given the following information about the production and demand of a commodity obtain the two regression lines:

  X Y
Mean 85 90
S.D. 5 6

The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.


An inquiry of 50 families to study the relationship between expenditure on accommodation (₹ x) and expenditure on food and entertainment (₹ y) gave the following results: 

∑ x = 8500, ∑ y = 9600, σX = 60, σY = 20, r = 0.6

Estimate the expenditure on food and entertainment when expenditure on accommodation is Rs 200.


The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)

  Sales Adv. Exp.
Mean 40 6
S.D. 10 1.5

Coefficient of correlation between sales and advertisement expenditure is 0.9.

Estimate the likely sales for a proposed advertisement expenditure of ₹ 10 crores.


In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:

Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information

  1. The mean values of X and Y.
  2. Correlation coefficient between X and Y.
  3. Standard deviation of Y.

The equations of two regression lines are
2x + 3y − 6 = 0
and 3x + 2y − 12 = 0 Find 

  1. Correlation coefficient
  2. `sigma_"X"/sigma_"Y"`

If the two regression lines for a bivariate data are 2x = y + 15 (x on y) and 4y = 3x + 25 (y on x), find

  1. `bar x`,
  2. `bar y`,
  3. bYX
  4. bXY
  5. r [Given `sqrt0.375` = 0.61]

The equations of two regression lines are 10x − 4y = 80 and 10y − 9x = − 40 Find:

  1. `bar x and bar y`
  2. bYX and bXY
  3. If var (Y) = 36, obtain var (X)
  4. r

Choose the correct alternative:

If r = 0.5, σx = 3, σy2 = 16, then bxy = ______


Choose the correct alternative:

Both the regression coefficients cannot exceed 1


State whether the following statement is True or False: 

If bxy < 0 and byx < 0 then ‘r’ is > 0


State whether the following statement is True or False: 

If u = x – a and v = y – b then bxy = buv 


State whether the following statement is True or False:

Corr(x, x) = 0


The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Find the value of the correlation coefficient `("Given"  sqrt(0.933) = 0.9667)`


If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y) 


Mean of x = 53

Mean of y = 28

Regression coefficient of y on x = – 1.2

Regression coefficient of x on y = – 0.3

a. r = `square`

b. When x = 50,

`y - square = square (50 - square)`

∴ y = `square`

c. When y = 25,

`x - square = square (25 - square)`

∴ x = `square`


x y xy x2 y2
6 9 54 36 81
2 11 22 4 121
10 5 50 100 25
4 8 32 16 64
8 7 `square` 64 49
Total = 30 Total = 40 Total = `square` Total = 220 Total = `square`

bxy = `square/square`

byx = `square/square`

∴ Regression equation of x on y is `square`

∴ Regression equation of y on x is `square`


bxy . byx = ______.


The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 women.

  x y
Mean 53 142
Variance 130 165

`sum(x_i - barx)(y_i - bary)` = 1170


|bxy + byz| ≥ ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×