Advertisements
Advertisements
प्रश्न
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
What should be the advertisement expenditure if the firm proposes a sales target ₹ 60 crores?
उत्तर
Let X = Sales,
Y = Advertisement expenditure
Given, `bar x = 40, bar y = 6, sigma_"X" = 10, sigma_"Y" = 1.5`, r = 0.9
`"b"_"XY" = "r" sigma_"X"/sigma_"Y" = 0.9 xx 10/1.5 = 6`
`"b"_"YX" = "r" sigma_"Y"/sigma_"X" = 0.9 xx 1.5/10 = 0.135`
The regression equation of Y on X is
`("Y" - bar y) = "b"_"YX" ("X" - bar x)`
∴ (Y - 6) = 0.135(X - 40)
∴ Y - 6 = 0.135X - 5.4
∴ Y = 0.135X - 5.4 + 6
∴ Y = 0.135X + 0.6
For X = 60,
Y = 0.135(60) + 0.6 = 8.1 + 0.6 = 8.7
∴ The advertisement expenditure should be ₹ 8.7 crores if the firm proposes a sales target ₹ 60 crores
APPEARS IN
संबंधित प्रश्न
Bring out the inconsistency in the following:
bYX + bXY = 1.30 and r = 0.75
Given the following information about the production and demand of a commodity obtain the two regression lines:
X | Y | |
Mean | 85 | 90 |
S.D. | 5 | 6 |
The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.
An inquiry of 50 families to study the relationship between expenditure on accommodation (₹ x) and expenditure on food and entertainment (₹ y) gave the following results:
∑ x = 8500, ∑ y = 9600, σX = 60, σY = 20, r = 0.6
Estimate the expenditure on food and entertainment when expenditure on accommodation is Rs 200.
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
Estimate the likely sales for a proposed advertisement expenditure of ₹ 10 crores.
In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:
Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information
- The mean values of X and Y.
- Correlation coefficient between X and Y.
- Standard deviation of Y.
The equations of two regression lines are
2x + 3y − 6 = 0
and 3x + 2y − 12 = 0 Find
- Correlation coefficient
- `sigma_"X"/sigma_"Y"`
If the two regression lines for a bivariate data are 2x = y + 15 (x on y) and 4y = 3x + 25 (y on x), find
- `bar x`,
- `bar y`,
- bYX
- bXY
- r [Given `sqrt0.375` = 0.61]
The equations of two regression lines are 10x − 4y = 80 and 10y − 9x = − 40 Find:
- `bar x and bar y`
- bYX and bXY
- If var (Y) = 36, obtain var (X)
- r
Choose the correct alternative:
If r = 0.5, σx = 3, σy2 = 16, then bxy = ______
Choose the correct alternative:
Both the regression coefficients cannot exceed 1
State whether the following statement is True or False:
If bxy < 0 and byx < 0 then ‘r’ is > 0
State whether the following statement is True or False:
If u = x – a and v = y – b then bxy = buv
State whether the following statement is True or False:
Corr(x, x) = 0
The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Find the value of the correlation coefficient `("Given" sqrt(0.933) = 0.9667)`
If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y)
Mean of x = 53
Mean of y = 28
Regression coefficient of y on x = – 1.2
Regression coefficient of x on y = – 0.3
a. r = `square`
b. When x = 50,
`y - square = square (50 - square)`
∴ y = `square`
c. When y = 25,
`x - square = square (25 - square)`
∴ x = `square`
x | y | xy | x2 | y2 |
6 | 9 | 54 | 36 | 81 |
2 | 11 | 22 | 4 | 121 |
10 | 5 | 50 | 100 | 25 |
4 | 8 | 32 | 16 | 64 |
8 | 7 | `square` | 64 | 49 |
Total = 30 | Total = 40 | Total = `square` | Total = 220 | Total = `square` |
bxy = `square/square`
byx = `square/square`
∴ Regression equation of x on y is `square`
∴ Regression equation of y on x is `square`
bxy . byx = ______.
The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 women.
x | y | |
Mean | 53 | 142 |
Variance | 130 | 165 |
`sum(x_i - barx)(y_i - bary)` = 1170
|bxy + byz| ≥ ______.