हिंदी

For a bivariate data: x¯=53,y¯=28, bYX = - 1.5 and bXY = - 0.2. Estimate Y when X = 50. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For a bivariate data: `bar x = 53, bar y = 28,` bYX = - 1.5 and bXY = - 0.2. Estimate Y when X = 50.

योग

उत्तर

Given, `bar x = 53, bar y = 28,` bYX = - 1.5 and bXY = - 0.2.

`"a" = bar y - "b"_"YX"  bar x`

∴ a = 28 - (- 1.5)(53) = 28 + 79.5 = 107.5

Now, the regression equation Y on X is

Y = a + bYX X

i.e., Y = 107.5 + (- 1.5)X

i.e., Y = 107.5 - 1.5 X

When X = 50, we get

Y = 107.5 - 1.5 × 50 = 107.5 - 75 = 32.5

shaalaa.com
Properties of Regression Coefficients
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Linear Regression - Exercise 3.3 [पृष्ठ ५०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Linear Regression
Exercise 3.3 | Q 6 | पृष्ठ ५०

संबंधित प्रश्न

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of Y for X = 50.


Bring out the inconsistency in the following:

bYX = 2.6 and bXY = `1/2.6`


Given the following information about the production and demand of a commodity obtain the two regression lines:

  X Y
Mean 85 90
S.D. 5 6

The coefficient of correlation between X and Y is 0.6. Also estimate the production when demand is 100.


The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)

  Sales Adv. Exp.
Mean 40 6
S.D. 10 1.5

Coefficient of correlation between sales and advertisement expenditure is 0.9.

Estimate the likely sales for a proposed advertisement expenditure of ₹ 10 crores.


In a partially destroyed record, the following data are available: variance of X = 25, Regression equation of Y on X is 5y − x = 22 and regression equation of X on Y is 64x − 45y = 22 Find

  1. Mean values of X and Y
  2. Standard deviation of Y
  3. Coefficient of correlation between X and Y.

If the two regression lines for a bivariate data are 2x = y + 15 (x on y) and 4y = 3x + 25 (y on x), find

  1. `bar x`,
  2. `bar y`,
  3. bYX
  4. bXY
  5. r [Given `sqrt0.375` = 0.61]

The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find `bar x, bar y`, r.


Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation.  [Given `sqrt0.375` = 0.61]


The following results were obtained from records of age (X) and systolic blood pressure (Y) of a group of 10 men.

  X Y
Mean 50 140
Variance 150 165

and `sum (x_i - bar x)(y_i - bar y) = 1120`

Find the prediction of blood pressure of a man of age 40 years.


Choose the correct alternative:

If byx < 0 and bxy < 0, then r is ______


Choose the correct alternative:

|byx + bxy| ≥ ______


Choose the correct alternative:

bxy and byx are ______


If n = 5, ∑xy = 76, ∑x2 = ∑y2 = 90, ∑x = 20 = ∑y, the covariance = ______


If u = `(x - "a")/"c"` and v = `(y - "b")/"d"`, then bxy = ______ 


The value of product moment correlation coefficient between x and x is ______


If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90 , Σxy = 76 Find Covariance (x,y) 


bxy . byx = ______.


If byx > 1 then bxy is _______.


The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 women.

  x y
Mean 53 142
Variance 130 165

`sum(x_i - barx)(y_i - bary)` = 1170


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×