Advertisements
Advertisements
प्रश्न
Bring out the inconsistency in the following:
bYX = 2.6 and bXY = `1/2.6`
उत्तर
Given, bYX = 2.6 and bXY = `1/2.6`
Here, bYX and bXY have the same signs.
Also, bYX > 1 and bXY < 1
Also, for consistent data, the signs of bYX and bXY are same and bYX > 1, bXY < 1
Here, bYX. bXY = 1
∴ The given data is consistent.
APPEARS IN
संबंधित प्रश्न
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find Correlation coefficient between X and Y.
Bring out the inconsistency in the following:
bYX = bXY = 1.50 and r = - 0.9
The following data about the sales and advertisement expenditure of a firms is given below (in ₹ Crores)
Sales | Adv. Exp. | |
Mean | 40 | 6 |
S.D. | 10 | 1.5 |
Coefficient of correlation between sales and advertisement expenditure is 0.9.
Estimate the likely sales for a proposed advertisement expenditure of ₹ 10 crores.
The equations of two regression lines are
2x + 3y − 6 = 0
and 3x + 2y − 12 = 0 Find
- Correlation coefficient
- `sigma_"X"/sigma_"Y"`
Choose the correct alternative:
If the regression equation X on Y is 3x + 2y = 26, then bxy equal to
Choose the correct alternative:
If byx < 0 and bxy < 0, then r is ______
State whether the following statement is True or False:
Cov(x, x) = Variance of x
|bxy + byx| ≥ ______
If u = `(x - "a")/"c"` and v = `(y - "b")/"d"`, then bxy = ______
The geometric mean of negative regression coefficients is ______
byx is the ______ of regression line of y on x
The equations of two lines of regression are 3x + 2y – 26 = 0 and 6x + y – 31 = 0. Find variance of x if variance of y is 36
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
ADVERTISEMENT (x) (₹ in lakhs) |
DEMAND (y) (₹ in lakhs) |
|
Mean | 10 | 90 |
Variance | 9 | 144 |
Coefficient of correlation between x and y is 0.8.
What should be the advertising budget if the company wants to attain the sales target of ₹ 150 lakhs?
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
Production (X) |
Demand (Y) |
|
Mean | 85 | 90 |
Variance | 25 | 36 |
Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.
Mean of x = 25
Mean of y = 20
`sigma_x` = 4
`sigma_y` = 3
r = 0.5
byx = `square`
bxy = `square`
when x = 10,
`y - square = square (10 - square)`
∴ y = `square`
bxy . byx = ______.