मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

If the Capacitors in the Previous Question Are Joined in Parallel, the Capacitance and the Breakdown Voltage of the Combination Will Be - Physics

Advertisements
Advertisements

प्रश्न

If the capacitors in the previous question are joined in parallel, the capacitance and the breakdown voltage of the combination will be

पर्याय

  • 2 C and 2 V

  • C and 2 V

  • 2 C and V

  • C and V.

MCQ

उत्तर

2C and V

In a parallel combination of capacitors, the potential difference across the capacitors remain the same, as the right-hand-side plates and the left-hand-side plates of both the capacitors are connected to the same terminals of the battery. Therefore, the potential remains the same, that is, V.

For the parallel combination of capacitors, the capacitance is given by 

`C_"eq" = C_1 + C_2`

Here , 

`C_1 = C_2 = C`

`therefore` `C_"eq" = 2C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Capacitors - MCQ [पृष्ठ १६४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 9 Capacitors
MCQ | Q 3 | पृष्ठ १६४

संबंधित प्रश्‍न

A capacitor 'C', a variable resistor 'R' and a bulb 'B' are connected in series to the ac mains in circuit as shown. The bulb glows with some brightness. How will the glow of the bulb change if (i) a dielectric slab is introduced between the plates of the capacitor, keeping resistance R to be the same; (ii) the resistance R is increased keeping the same capacitance?


A cylindrical capacitor has two co-axial cylinders of length 15 cm and radii 1.5 cm and 1.4 cm. The outer cylinder is earthed and the inner cylinder is given a charge of 3.5 µC. Determine the capacitance of the system and the potential of the inner cylinder. Neglect end effects (i.e., bending of field lines at the ends).


Deduce an expression for equivalent capacitance C when three capacitors C1, C2 and C3 connected in parallel.


Figure 4 below shows a capacitor C, an inductor L and a resistor R, connected in series
to an a.c. supply of 220 V

Calculate:

1) The resonant frequency of the given CLR circuit.

2) Current flowing through·the circuit.

3) Average power consumed by the circuit.


A parallel-plate capacitor has plates of unequal area. The larger plate is connected to the positive terminal of the battery and the smaller plate to its negative terminal. Let Q, and Q be the charges appearing on the positive and negative plates respectively.


Each plate of a parallel plate capacitor has a charge q on it. The capacitor is now connected to a batter. Now,
(a) the facing surfaces of the capacitor have equal and opposite charges
(b) the two plates of the capacitor have equal and opposite charges
(c) the battery supplies equal and opposite charges to the two plates
(d) the outer surfaces of the plates have equal charges


A parallel-plate capacitor having plate area 25 cm2 and separation 1⋅00 mm is connected to a battery of 6⋅0 V. Calculate the charge flown through the battery. How much work has been done by the battery during the process?


A parallel-plate capacitor having plate area 20 cm2 and separation between the plates 1⋅00 mm is connected to a battery of 12⋅0 V. The plates are pulled apart to increase the separation to 2⋅0 mm. (a) Calculate the charge flown through the circuit during the process. (b) How much energy is absorbed by the battery during the process? (c) Calculate the stored energy in the electric field before and after the process. (d) Using the expression for the force between the plates, find the work done by the person pulling the plates apart. (e) Show and justify that no heat is produced during this transfer of charge as the separation is increased.


An ac circuit consists of a series combination of circuit elements X and Y. The current is ahead of the voltage  in phase by `pi /4` . If element X is a pure resistor of 100Ω ,

(a)  name the circuit element Y.
(b)  calculate the rms value of current, if rms value of voltage is  141V.
(c)  what will happen if the ac source is replaced by a dc source ?


A wire of resistance 'R' is cut into 'n' equal parts. These parts are then connected in parallel with each other. The equivalent resistance of the combination is : 


The figure shows a network of five capacitors connected to a 100 V supply. Calculate the total energy stored in the network.


On decreasing the distance between the plates of a parallel plate capacitor, its capacitance ______.

Two parallel plate capacitors X and Y, have the same area of plates and same separation between plates. X has air and Y with dielectric of constant 2, between its plates. They are connected in series to a battery of 12 V. The ratio of electrostatic energy stored in X and Y is ______.


In the circuit shown in figure, initially K1 is closed and K2 is open. What are the charges on each capacitors.

Then K1 was opened and K2 was closed (order is important), What will be the charge on each capacitor now? [C = 1µF]


Two equal capacitors are first connected in series and then in parallel The ratio of the equivalent capacities in the two cases will be ______.


The capacitors, each of 4 µF are to be connected in such a way that the effective capacitance of the combination is 6 µF. This can be achieved by connecting ______.


Three capacitors of capacitances 2 pF, 3 pF and 4 pF are connected in parallel. What is the total capacitance of the combination?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×