मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Two Capacitors Each Having Capacitance C and Breakdown Voltage V Are Joined in Series. the Capacitance and the Breakdown Voltage of the Combination Will Be - Physics

Advertisements
Advertisements

प्रश्न

Two capacitors each having capacitance C and breakdown voltage V are joined in series. The capacitance and the breakdown voltage of the combination will be

पर्याय

  • 2 C and 2 V

  • C/2 and V/2

  • 2 C and V/2

  • C/2 and 2 V.

MCQ

उत्तर

C/2 and 2 V.

Since the voltage gets added up when the capacitors are connected in series, the voltage of the combination is 2V.

Also, the capacitance of a series combination is given by 

`1/C_"net" = 1/C_1 + 1/C_2` 

Here , 

C_net = Net capacitance of the combination

`C_1 = C_2 = C`

`therefore` `C_"net" = C/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Capacitors - MCQ [पृष्ठ १६४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 9 Capacitors
MCQ | Q 2 | पृष्ठ १६४

संबंधित प्रश्‍न

A capacitor of capacitance ‘C’ is being charged by connecting it across a dc source along with an ammeter. Will the ammeter show a momentary deflection during the process of charging? If so, how would you explain this momentary deflection and the resulting continuity of current in the circuit? Write the expression for the current inside the capacitor.


A capacitor of capacitance C is charged to a potential V. The flux of the electric field through a closed surface enclosing the capacitor is


The plates of a parallel-plate capacitor are made of circular discs of radii 5⋅0 cm each. If the separation between the plates is 1⋅0 mm, what is the capacitance?


Find the charge appearing on each of the three capacitors shown in figure .


Take `C_1 = 4.0  "uF" and C_2 = 6.0  "uF"` in figure . Calculate the equivalent capacitance of the combination between the points indicated.


Find the capacitance of the combination shown in figure between A and B.


The two square faces of a rectangular dielectric slab (dielectric constant 4⋅0) of dimensions 20 cm × 20 cm × 1⋅0 mm are metal-coated. Find the capacitance between the coated surfaces.


A parallel-plate capacitor of capacitance 5 µF is connected to a battery of emf 6 V. The separation between the plates is 2 mm. (a) Find the charge on the positive plate. (b) Find the electric field between the plates. (c) A dielectric slab of thickness 1 mm and dielectric constant 5 is inserted into the gap to occupy the lower half of it. Find the capacitance of the new combination. (d) How much charge has flown through the battery after the slab is inserted?


Find the capacitances of the capacitors shown in figure . The plate area is Aand the separation between the plates is d. Different dielectric slabs in a particular part of the figure are of the same thickness and the entire gap between the plates is filled with the dielectric slabs.


A capacitor is formed by two square metal-plates of edge a, separated by a distance d. Dielectrics of dielectric constant K1 and K2 are filled in the gap as shown in figure . Find the capacitance.


You are provided with 8 μF capacitors. Show with the help of a diagram how you will arrange minimum number of them to get a resultant capacitance of 20 μF.


Three circuits, each consisting of a switch 'S' and two capacitors, are initially charged, as shown in the figure. After the switch has been closed, in which circuit will the charge on the left-hand capacitor
(i) increase,
(ii) decrease, and
(iii) remains the same? Give reasons.


Capacitors P and Q have identical cross-sectional areas A and separation d. The space between the capacitors is filled with a dielectric of dielectric constant Er as shown in the figure. Calculate the capacitance of capacitors P and Q.


A capacitor works in ______.

Three capacitors 2µF, 3µF, and 6µF are joined in series with each other. The equivalent capacitance is ____________.


Can the potential function have a maximum or minimum in free space?


A parallel plate capacitor is filled by a dielectric whose relative permittivity varies with the applied voltage (U) as ε = αU where α = 2V–1. A similar capacitor with no dielectric is charged to U0 = 78V. It is then connected to the uncharged capacitor with the dielectric. Find the final voltage on the capacitors.


Two plates A and B of a parallel plate capacitor are arranged in such a way, that the area of each plate is S = 5 × 10-3 m 2 and distance between them is d = 8.85 mm. Plate A has a positive charge q1 = 10-10 C and Plate B has charge q2 = + 2 × 10-10 C. Then the charge induced on the plate B due to the plate A be - (....... × 10-11 )C


Read the following paragraph and answer the questions.

A capacitor is a system of two conductors separated by an insulator. The two conductors have equal and opposite charges with a potential difference between them. The capacitance of a capacitor depends on the geometrical configuration (shape, size and separation) of the system and also on the nature of the insulator separating the two conductors. They are used to store charges. Like resistors, capacitors can be arranged in series or parallel or a combination of both to obtain the desired value of capacitance.
  1. Find the equivalent capacitance between points A and B in the given diagram.
  2. A dielectric slab is inserted between the plates of the parallel plate capacitor. The electric field between the plates decreases. Explain.
  3. A capacitor A of capacitance C, having charge Q is connected across another uncharged capacitor B of capacitance 2C. Find an expression for (a) the potential difference across the combination and (b) the charge lost by capacitor A.
    OR
    Two slabs of dielectric constants 2K and K fill the space between the plates of a parallel plate capacitor of plate area A and plate separation d as shown in the figure. Find an expression for the capacitance of the system.
     

Calculate equivalent capacitance of the circuit shown in the Figure given below:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×