Advertisements
Advertisements
प्रश्न
If (x + 1) and (x – 2) are factors of x3 + (a + 1)x2 – (b – 2)x – 6, find the values of a and b. And then, factorise the given expression completely.
उत्तर
Let f(x) = x3 + (a + 1)x2 – (b – 2)x – 6
Since, (x + 1) is a factor of f(x).
∴ Remainder = f(–1) = 0
(–1)3 + (a + 1)(–1)2 – (b – 2)(–1) – 6 = 0
–1 + (a + 1) + (b – 2) – 6 = 0
a + b – 8 = 0 ...(i)
Since, (x – 2) is a factor of f(x).
∴ Remainder = f(2) = 0
(2)3 + (a + 1)(2)2 – (b – 2)(2) – 6 = 0
8 + 4a + 4 – 2b + 4 – 6 = 0
4a – 2b + 10 = 0
2a – b + 5 = 0 ...(ii)
Adding (i) and (ii), we get,
3a – 3 = 0
a = 1
Substituting the value of a in (i), we get,
1 + b – 8 = 0
b = 7
∴ f(x) = x3 + 2x2 – 5x – 6
Now, (x + 1) and (x – 2) are factors of f(x).
Hence, (x + 1)(x – 2) = x2 – x – 2 is a factor of f(x).
x + 3
`x^2 - x - 2")"overline(x^3 + 2x^2 - 5x - 6)`
x3 – x2 – 2x
3x2 – 3x – 6
3x2 – 3x – 6
0
∴ f(x) = x3 + 2x2 – 5x – 6 = (x + 1)(x – 2)(x + 3)
APPEARS IN
संबंधित प्रश्न
Find the number that must be subtracted from the polynomial 3y3 + y2 – 22y + 15, so that the resulting polynomial is completely divisible by y + 3.
Using remainder Theorem, factorise:
2x3 + 7x2 − 8x – 28 Completely
If x – 2 is a factor of each of the following three polynomials. Find the value of ‘a’ in each case:
x5 - 3x4 - ax3 + 3ax2 + 2ax + 4.
Show that x2 - 9 is factor of x3 + 5x2 - 9x - 45.
If (x – 2) is a factor of 2x3 – x2 + px – 2, then
(i) find the value of p.
(ii) with this value of p, factorise the above expression completely
When 3x2 – 5x + p is divided by (x – 2), the remainder is 3. Find the value of p. Also factorise the polynomial 3x2 – 5x + p – 3.
If (2x + 1) is a factor of both the expressions 2x2 – 5x + p and 2x2 + 5x + q, find the value of p and q. Hence find the other factors of both the polynomials.
Factorize completely using factor theorem:
2x3 – x2 – 13x – 6
The polynomial 3x3 + 8x2 – 15x + k has (x – 1) as a factor. Find the value of k. Hence factorize the resulting polynomial completely.
If (x – a) is a factor of x3 – ax2 + x + 5; the value of a is ______.