मराठी

The polynomial 3x3 + 8x2 – 15x + k has (x – 1) as a factor. Find the value of k. Hence factorize the resulting polynomial completely. - Mathematics

Advertisements
Advertisements

प्रश्न

The polynomial 3x3 + 8x2 – 15x + k has (x – 1) as a factor. Find the value of k. Hence factorize the resulting polynomial completely.

बेरीज

उत्तर

Given, P(x) = 3x3 + 8x2 – 15x + k

Put x – 1 = 0

x = 1

Now, P(1) = 3(1)3 + 8(1)2 – 15(1) + k = 0

3 + 8 – 15 + k = 0

– 4 + k = 0

k = 4

Hence, k = 4

Factorization:

            P(x) = 3x3 + 8x2 – 15x + 4
x-1)3x3+8x2-15x+4¯(3x2+11x-4
           3x3 – 3x2
          –      +                  
                 11x2 – 15x
                 11x2 – 11x
          –      +                  
               – 4x + 4
               – 4x + 4
                   +  –            

∴ 3x3 + 8x2 – 15x + 4 = (x – 1)(3x2 + 11x – 4)

= (x – 1)(3x2 + 12x – x – 4)

= (x – 1)[3x(x + 4) – 1(x + 4)]

= (x – 1)(3x – 1)(x + 4)

shaalaa.com
Factorising a Polynomial Completely After Obtaining One Factor by Factor Theorem
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (February) Official
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.