Advertisements
Advertisements
प्रश्न
The polynomial 3x3 + 8x2 – 15x + k has (x – 1) as a factor. Find the value of k. Hence factorize the resulting polynomial completely.
उत्तर
Given, P(x) = 3x3 + 8x2 – 15x + k
Put x – 1 = 0
x = 1
Now, P(1) = 3(1)3 + 8(1)2 – 15(1) + k = 0
Hence, k = 4
Factorization:
P(x) = 3x3 + 8x2 – 15x + 4
3x3 – 3x2
– +
11x2 – 15x
11x2 – 11x
– +
– 4x + 4
– 4x + 4
+ –
∴ 3x3 + 8x2 – 15x + 4 = (x – 1)(3x2 + 11x – 4)
= (x – 1)(3x2 + 12x – x – 4)
= (x – 1)[3x(x + 4) – 1(x + 4)]
= (x – 1)(3x – 1)(x + 4)
APPEARS IN
संबंधित प्रश्न
A two digit positive number is such that the product of its digits is 6. If 9 is added to the number, the digits interchange their places. Find the number.
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3) x – 6 leave the same remainder. Find the value of ‘p’.
The expression 4x3 – bx2 + x – c leaves remainders 0 and 30 when divided by x + 1 and 2x – 3 respectively. Calculate the values of b and c. Hence, factorise the expression completely.
Using Remainder Theorem, factorise : x3 + 10x2 – 37x + 26 completely.
Using the Reminder Theorem, factorise of the following completely.
2x3 + x2 – 13x + 6
In the following two polynomials. Find the value of ‘a’ if x + a is a factor of each of the two:
x3 + ax2 - 2x + a + 4
If x – 2 is a factor of each of the following three polynomials. Find the value of ‘a’ in each case:
x2 - 3x + 5a
If x – 2 is a factor of each of the following three polynomials. Find the value of ‘a’ in each case:
x5 - 3x4 - ax3 + 3ax2 + 2ax + 4.
Use factor theorem to factorise the following polynomials completely: x3 – 19x – 30
If (2x + 1) is a factor of both the expressions 2x2 – 5x + p and 2x2 + 5x + q, find the value of p and q. Hence find the other factors of both the polynomials.