Advertisements
Advertisements
प्रश्न
Use factor theorem to factorise the following polynomials completely: x3 – 19x – 30
उत्तर
f(x) = x3 – 19x – 30
Let x = –2, then
f(–2) = (–2)3 – 19(–2) – 30
= –8 + 38 – 30
= 38 – 38
= 0
∴ (x + 2) is a factor of f(x)
Now dividing f(x) by (x + 2), we get
f(x) = x3 – 19x – 30
= (x + 2)(x2 – 2x – 15)
= (x + 2){(x2 –5x + 3x – 15}
= (x + 2){x(x – 5) + 3(x – 5)}
= (x + 2)(x – 5)(x + 3)
`x + 2")"overline(x^3 - 19x - 30)("x^2 - 2x - 15`
x3 + 2x2
– –
–2x2 – 19x
–2x2 – 4x
+ +
–15x – 30
–15x – 30
+ +
x
APPEARS IN
संबंधित प्रश्न
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3) x – 6 leave the same remainder. Find the value of ‘p’.
Using the Remainder Theorem, factorise each of the following completely.
3x3 + 2x2 – 23x – 30
Find the number that must be subtracted from the polynomial 3y3 + y2 – 22y + 15, so that the resulting polynomial is completely divisible by y + 3.
If (x + 1) and (x – 2) are factors of x3 + (a + 1)x2 – (b – 2)x – 6, find the values of a and b. And then, factorise the given expression completely.
Using remainder Theorem, factorise:
2x3 + 7x2 − 8x – 28 Completely
Using the factor theorem, show that (x - 2) is a factor of `x^3 + x^2 -4x -4 .`
Hence factorise the polynomial completely.
In the following two polynomials, find the value of ‘a’ if x – a is a factor of each of the two:
x5 - a2x3 + 2x + a + 1.
Show that x2 - 9 is factor of x3 + 5x2 - 9x - 45.
If (x – 2) is a factor of 2x3 – x2 + px – 2, then
(i) find the value of p.
(ii) with this value of p, factorise the above expression completely
If (x – a) is a factor of x3 – ax2 + x + 5; the value of a is ______.