Advertisements
Advertisements
प्रश्न
If x3 + ax2 + bx + 6 has x – 2 as a factor and leaves a remainder 3 when divided by x – 3, find the values of a and b.
उत्तर
Let f(x) = x3 + ax2 + bx + 6
∴ x – 2 = 0 `\implies` x = 2
(2)3 + a(2)2 + b(2) + 6 = 0
8 + 4a + 2b + 6 = 0
4a + 2b + 14 = 0
2(2a + b + 7) = 0
2a + b + 7 = `0/2`
2a + b + 7 = 0
2a + b = –7 ...(i)
∴ x – 3 = 0 `\implies` x = 3
(3)3 + a(3)2 + b(3) + 6 = 3
27 + 9a + 3b + 6 = 3
9a + 3b + 33 = 3
9a + 3b = 3 – 33
9a + 3b = –30
3(3a + b) = –30
3a + b = `(-30)/3`
3a + b = –10 ...(ii)
Subtracting (i) from (ii), we get,
2a + b = – 7
3a + b = – 10
– – +
– a = 3
∴ a = –3
Substituting the value of a = –3 in (i), we get,
2a + b = –7
2(–3) + b = –7
– 6 + b + 7 = 0
b = –7 + 6
∴ b = –1
APPEARS IN
संबंधित प्रश्न
Use the Remainder Theorem to find which of the following is a factor of 2x3 + 3x2 – 5x – 6.
x + 2
If (x – 2) is a factor of the expression 2x3 + ax2 + bx – 14 and when the expression is divided by (x – 3), it leaves a remainder 52, find the values of a and b.
Using the Remainder Theorem, factorise the following completely:
3x3 + 2x2 – 23x – 30
Using the Remainder Theorem, factorise the following completely:
4x3 + 7x2 – 36x – 63
Using the Remainder Theorem, factorise the following completely:
x3 + x2 – 4x – 4
Find the values of a and b when the polynomial f(x)= ax3 + 3x2 +bx -3 is exactly divisible by (2x+3) and leaves a remainder -3 when divided by (x+2).
Find the values of a and b when the polynomials f(x)= 2x2 -5x +a and g(x)= 2x2 + 5x +b both have a factor (2x+1).
Find the remainder (without division) on dividing f(x) by (2x + 1) where f(x) = 4x2 + 5x + 3
The polynomial p(x) = x4 – 2x3 + 3x2 – ax + 3a – 7 when divided by x + 1 leaves the remainder 19. Find the values of a. Also find the remainder when p(x) is divided by x + 2.
If x25 + x24 is divided by (x + 1), the result is ______.