मराठी

In Below Fig., Psda is a Parallelogram in Which Pq = Qr = Rs and Ap || Bq || Cr. Prove that Ar (δ Pqe) = Ar (δCfd). - Mathematics

Advertisements
Advertisements

प्रश्न

In below fig., PSDA is a parallelogram in which PQ = QR = RS and AP || BQ || CR. Prove
that ar (Δ PQE) = ar (ΔCFD).

उत्तर

Given that PSDA is a parallelogram
Since, AP || BQ ||CR || DS and AD || PS
∴PQ = CD      .....(1)
In  ΔBED,C is the midpoint of BD and CF || BE
∴ F is the midpoint of ED

⇒ EF = PE

similarly 

EF = FD 

∴ PE = FD  ........ (2) 

In Δ SPQE and CFD , WE have 

PE = FD 

∠EDQ =  ∠FDC,          [Alternative angles]

And PQ = CD

So by SAS congruence criterion, we have . ΔPQE ≅ ΔDCF .

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Areas of Parallelograms and Triangles - Exercise 14.3 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 14 Areas of Parallelograms and Triangles
Exercise 14.3 | Q 22 | पृष्ठ ४७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×