Advertisements
Advertisements
प्रश्न
In constructing the network which one of the following statements is false?
पर्याय
Each activity is represented by one and only one arrow. (i.e.) only one activity can connect any two nodes.
Two activities can be identified by the same head and tail events.
Nodes are numbered to identify an activity uniquely. Tail node (starting point) should be lower than the head node (end point) of an activity.
Arrows should not cross each other.
उत्तर
Two activities can be identified by the same head and tail events.
APPEARS IN
संबंधित प्रश्न
A project schedule has the following characteristics
Activity | 1 - 2 | 1 - 3 | 2 - 4 | 3 - 4 | 3 - 5 | 4 - 9 | 5 - 6 | 5 - 7 | 6 - 8 | 7 - 8 | 8 - 10 | 9 - 10 |
Time | 4 | 1 | 1 | 1 | 6 | 5 | 4 | 8 | 1 | 2 | 5 | 7 |
Construct the network and calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity and determine the Critical path of the project and duration to complete the project.
Draw the network and calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity and determine the Critical path of the project and duration to complete the project.
Jobs | 1 - 2 | 1 - 3 | 2 - 4 | 3 - 4 | 3 - 5 | 4 - 5 | 4 - 6 | 5 - 6 |
Duration | 6 | 5 | 10 | 3 | 4 | 6 | 2 | 9 |
The following table gives the activities of a project and their duration in days
Activity | 1 - 2 | 1 - 3 | 2 - 3 | 2 - 4 | 3 - 4 | 3 - 5 | 4 - 5 |
Duration | 5 | 8 | 6 | 7 | 5 | 4 | 8 |
Construct the network and calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity and determine the Critical path of the project and duration to complete the project.
A Project has the following time schedule
Activity | 1 - 2 | 1 - 6 | 2 - 3 | 2 - 4 | 3 - 5 | 4 - 5 | 6 - 7 | 5 - 8 | 7 - 8 |
Duration (in days) | 7 | 6 | 14 | 5 | 11 | 7 | 11 | 4 | 18 |
Construct the network and calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity and determine the Critical path of the project and duration to complete the project.
The following table use the activities in a construction projects and relevant information
Activity | 1 - 2 | 1 - 3 | 2 - 3 | 2 - 4 | 3 - 4 | 4 - 5 |
Duration (in days) |
22 | 27 | 12 | 14 | 6 | 12 |
Draw the network for the project, calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity and find the critical path. Compute the project duration.
In a network while numbering the events which one of the following statements is false?
The objective of network analysis is to
Draw a network diagram for the following activities.
Activity code | A | B | C | D | E | F | G | H | I | J | K |
Predecessor activity | - | A | A | A | B | C | C | C, D | E, F | G, H | I, J |
Draw the network diagram for the following activities.
Activity code | A | B | C | D | E | F | G |
Predecessor activity | - | - | A | A | B | C | D, E |
The following table gives the characteristics of the project
Activity | 1 - 2 | 1 - 3 | 2 - 3 | 3 - 4 | 3 - 5 | 4 - 6 | 5 - 6 | 6 - 7 |
Duration (in days) |
5 | 10 | 3 | 4 | 6 | 6 | 5 | 5 |
Draw the network for the project, calculate the earliest start time, earliest finish time, latest start time and latest finish time of each activity and find the critical path. Compute the project duration.