मराठी

In the Following Cases, Find the Coordinates of the Foot of the Perpendicular Drawn from the Origin.2x + 3y + 4z – 12 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

2x + 3y + 4z – 12 = 0

उत्तर

Let the coordinates of the foot of perpendicular P from the origin to the plane be (x1y1z1).

2x + 3y + 4z − 12 = 0

⇒ 2x + 3y + 4z = 12 … (1)

The direction ratios of normal are 2, 3, and 4

`:. sqrt((2)^2 + (3)^2 + (4)^2) =  sqrt29`

Dividing both sides of equation (1) by sqrt29, we obtain

This equation is of the form lx + my + nz = d, where lmn are the direction cosines of normal to the plane and d is the distance of normal from the origin.

The coordinates of the foot of the perpendicular are given by

(ldmdnd).

Therefore, the coordinates of the foot of the perpendicular are

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Three Dimensional Geometry - Exercise 11.3 [पृष्ठ ४९३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 11 Three Dimensional Geometry
Exercise 11.3 | Q 4.1 | पृष्ठ ४९३

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the vector equation of the plane passing through the points `hati +hatj-2hatk, hati+2hatj+hatk,2hati-hatj+hatk`. Hence find the cartesian equation of the plane.


Find the vector equation of the plane which is at a distance of 5 units from the origin and which is normal to the vector  `2hati + hatj + 2hatk.`


Write the vector equation of the plane, passing through the point (a, b, c) and parallel to the plane `vec r.(hati+hatj+hatk)=2`


Find the vector equation of the plane which contains the line of intersection of the planes `vecr (hati+2hatj+3hatk)-4=0` and `vec r (2hati+hatj-hatk)+5=0` which is perpendicular to the plane.`vecr(5hati+3hatj-6hatk)+8=0`


Find the vector equation of the plane with intercepts 3, –4 and 2 on x, y and z-axis respectively.


Find the equation of the plane which contains the line of intersection of the planes

`vecr.(hati-2hatj+3hatk)-4=0" and"`

`vecr.(-2hati+hatj+hatk)+5=0`

and whose intercept on x-axis is equal to that of on y-axis.


Find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is `2hati-3hatj+6hatk`


The x-coordinate of a point of the line joining the points P(2,2,1) and Q(5,1,-2) is 4. Find its z-coordinate


Find the vector equation of a line passing through the points A(3, 4, –7) and B(6, –1, 1).


Find the Cartesian equation of the following planes:

`vecr.(hati + hatj-hatk) = 2`


Find the Cartesian equation of the following planes:

`vecr.(2hati + 3hatj-4hatk) = 1`


Find the Cartesian equation of the following planes:

`vecr.[(s-2t)hati + (3 - t)hatj + (2s + t)hatk] = 15`


In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

3y + 4z – 6 = 0


In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

x + y + z = 1


In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

5y + 8 = 0


Find the vector and Cartesian equation of the planes that passes through the point (1, 0, −2) and the normal to the plane is `hati + hatj - hatk`


Find the cartesian form of the equation of the plane `bar r=(hati+hatj)+s(hati-hatj+2hatk)+t(hati+2hatj+hatj)`


Find the image of a point having the position vector: `3hati - 2hatj + hat k` in the plane `vec r.(3hati - hat j + 4hatk) = 2`


Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes  \[\vec{r} \cdot \left( \hat{i}  - \hat{j}  + 2 \hat{k}  \right) = 5 \text{ and } \vec{r} \cdot \left( 3 \hat{i}  + \hat{j}  + \hat{k}  \right) = 6 .\]

 


Find the vector and cartesian equations of the plane passing throuh the points (2,5,- 3), (-2, - 3,5) and (5,3,-3). Also, find the point of intersection of this plane with the line passing through points (3, 1, 5) and (–1, –3, –1).


Find the equation of the plane passing through the intersection of the planes `vec(r) .(hat(i) + hat(j) + hat(k)) = 1"and" vec(r) . (2 hat(i) + 3hat(j) - hat(k)) +4 = 0 `and parallel to x-axis. Hence, find the distance of the plane from x-axis.


Find the vector and cartesian equation of the plane passing through the point (2, 5, - 3), (-2, -3, 5) and (5, 3, -3). Also, find the point of intersection of this plane with the line passing through points (3, 1, 5) and (-1, -3, -1).


Vector equation of a line which passes through a point (3, 4, 5) and parallels to the vector `2hati + 2hatj - 3hatk`.


Find the vector and Cartesian equations of the plane passing through the points (2, 2 –1), (3, 4, 2) and (7, 0, 6). Also find the vector equation of a plane passing through (4, 3, 1) and parallel to the plane obtained above.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.


The Cartesian equation of the plane `vec"r" * (hat"i" + hat"j" - hat"k")` = 2 is ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vec"r" = 5hat"i" - 4hat"j" + 6hat"k" + lambda(3hat"i" + 7hat"j" + 2hat"k")`.


Find the vector and the cartesian equations of the plane containing the point `hati + 2hatj - hatk` and parallel to the lines `vecr = (hati + 2hatj + 2hatk) + s(2hati - 3hatj + 2hatk)` and `vecr = (3hati + hatj - 2hatk) + t(hati - 3hatj + hatk)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×