Advertisements
Advertisements
प्रश्न
In the above figure, a sphere is placed in a cylinder. It touches the top, bottom and curved surface of the cylinder. If the radius of the base of the cylinder is ‘r’, write the answer to the following questions.
a. What is the height of the cylinder in terms of ‘r’?
b. What is the ratio of the curved surface area of the cylinder and the surface area of the sphere?
c. What is the ratio of volumes of the cylinder and of the sphere?
उत्तर
(a)
Vol. = `pir^2h`
h = `1/(pir^2)`
(b)
`"CSA of Cylinder"/"SA of sphere"`
= `(2pirh + 2pir^2)/(4pir^2)`
=`(2pir(h + r))/(2pir (2r))`
= `(h + r)/(2r)`
(c)
`"Vol. of cylinder"/"Vol. of a sphere"`
= `(pir^2h)/(4/3pir^3)`
= `(pir^2(h))/(pir^2(4/3r)) = h/r xx 3/4`
= `(3h)/(4r)`
APPEARS IN
संबंधित प्रश्न
Due to heavy floods in a state, thousands were rendered homeless. 50 schools collectively offered to the state government to provide place and the canvas for 1500 tents to be fixed by the governments and decided to share the whole expenditure equally. The lower part of each tent is cylindrical of base radius 2.8 cm and height 3.5 m, with conical upper part of same base radius but of height 2.1 m. If the canvas used to make the tents costs Rs. 120 per sq. m, find the amount shared by each school to set up the tents. What value is generated by the above problem? (use `pi =22/7`)
To fill a swimming pool two pipes are to be used. If the pipe of larger diameter is used for 4 hours and the pipe of smaller diameter for 9 hours, only half the pool can be filled. Find, how long it would take for each pipe to fill the pool separately, if the pipe of smaller diameter takes 10 hours more than the pipe of larger diameter to fill the pool.
Water flows at the rate of 10 m / minute through a cylindrical pipe 5 mm in diameter . How long would it take to fill a conical vessel whose diameter at the base is 40 cm and depth 24 cm.
A metallic sphere of radius 10.5 cm is melted and thus recast into small cones, each of radius 3.5 cm and height 3 cm. Find how many cones are obtained.
Find the number of coins, 1.5 cm is diameter and 0.2 cm thick, to be melted to form a right circular cylinder of height 10 cm and diameter 4.5 cm.
Height of a solid cylinder is 10 cm and diameter 8 cm. Two equal conical hole have been made from its both ends. If the diameter of the holes is 6 cm and height 4 cm, find (i) volume of the cylinder, (ii) volume of one conical hole, (iii) volume of the remaining solid.
A right angled triangle with sides 3 cm and 4 cm is revolved around its hypotenuse. Find the volume of the double cone thus generated.
The radii of the ends of a bucket of height 24 cm are 15 cm and 5 cm. Find its capacity. (Take π = 22/7)
A wall 24 m , 0.4 m thick and 6 m high is constructed with the bricks each of dimensions 25 cm \[\times\] 16 cm \[\times\] 10 cm . If the mortar occupies \[\frac{1}{10}th\] of the volume of the wall, then find the number of bricks used in constructing the wall.
What is the ratio of the volumes of a cylinder, a cone and a sphere, if each has the same diameter and same height?
A sphere of maximum volume is cut-out from a solid hemisphere of radius r, what is the ratio of the volume of the hemisphere to that of the cut-out sphere?
A sphere of radius 6 cm is dropped into a cylindrical vessel partly filled with water. The radius of the vessel is 8 cm. If the sphere is submerged completely, then the surface of the water rises by
From a solid cylinder whose height is 8 cm and radius 6 cm, a conical cavity of height 8 cm and base radius 6 cm is hollowed out. Find the volume of the remaining solid. Also, find the total surface area of the remaining solid.
A farmer connects a pipe of internal diameter 25 cm from a canal into a cylindrical tank in his field, which is 12 m in diameter and 2.5 m deep. If water flows through the pipe at the rate of 3.6 km/hr, then in how much time will the tank be filled? Also, find the cost of water if the canal department charges at the rate of ₹ 0.07 per m3.
In a village, a well with 10 m inside diameter, is dug 14 m deep. Earth taken out of it is spread all around to a width 5 m to form an embankment. Find the height of the embankment. What value of the villagers is reflected here?
The volume of a sphere is 4851 cm3. Find its curved surface area.
Two cubes, each of volume 64 cm3, are joined end to end. Find the total surface area of the resulting cuboid.
A farmer connects a pipe of internal diameter 20 cm from a canal into a cylindrical tank which is 10 m in diameter and 2 m deep. If the water flows through the pipe at the rate of 4 km/hr, then in how much time will the tank be filled completely?
How many solid cylinders of radius 6 cm and height 12 cm can be made by melting a solid sphere of radius 18 cm?
Activity: Radius of the sphere, r = 18 cm
For cylinder, radius R = 6 cm, height H = 12 cm
∴ Number of cylinders can be made =`"Volume of the sphere"/square`
`= (4/3 pir^3)/square`
`= (4/3 xx 18 xx 18 xx 18)/square`
= `square`
The radii of the top and bottom of a bucket of slant height 45 cm are 28 cm and 7 cm, respectively. The curved surface area of the bucket is ______.