मराठी

In the figure, AB is the chord of a circle with centre O and DOC is a line segment such that BC = DO. If ∠C = 20°, find angle AOD. - Mathematics

Advertisements
Advertisements

प्रश्न

In the figure, AB is the chord of a circle with centre O and DOC is a line segment such that BC = DO. If ∠C = 20°, find angle AOD.

बेरीज

उत्तर


Join OB,

In ΔOBC,

BC = OD = OB  ...(Radii of the same circle)

∴ ∠BOC = ∠BCO = 20°

And Ext. ∠ABO = ∠BCO + ∠BOC

`=>` Ext. ∠ABO = 20° + 20° = 40°  ...(i)

In ΔOAB,

OA = OB  ...(Radii of the same circle)

∴ ∠OAB = ∠OBA = 40°   ...(From (i))

∠AOB = 180° – ∠OAB – ∠OBA

`=>` ∠AOB = 180° – 40° – 40° = 100°

Since DOC is a straight line

∴ ∠AOD + ∠AOB + ∠BOC = 180°

`=>` ∠AOD + 100° + 20° = 180°

`=>` ∠AOD = 180° – 120°

`=>` ∠AOD = 60°

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Tangents and Intersecting Chords - Exercise 18 (C) [पृष्ठ २८५]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 18 Tangents and Intersecting Chords
Exercise 18 (C) | Q 11 | पृष्ठ २८५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×