मराठी

In the following figure, ABCD and AEFD are two parallelograms. Prove that ar (PEA) = ar (QFD). [Hint: Join PD]. - Mathematics

Advertisements
Advertisements

प्रश्न

In the following figure, ABCD and AEFD are two parallelograms. Prove that ar (PEA) = ar (QFD). [Hint: Join PD].

बेरीज

उत्तर

Given: ABCD and AEFD are two parallelograms.

To prove: ar (APEA) = ar (AQFD)

Proof: In quadrilateral PQDA,

AP || DQ  ...[Since, in parallelogram ABCD, AB || CD]

And PQ || AD  ...[Since, in parallelogram AEFD, FE || AD]

Then, quadrilateral PQDA is a parallelogram.

Also, parallelogram PQDA and AEFD are on the same base AD and between the same parallels AD and EQ.

ar (parallelogram PQDA) = ar (parallelogram AEFD)

On subtracting ar (quadrilateral APFD) from both sides, we get

ar (parallelogram PQDA) – ar (quadrilateral APFD)

= ar (parallelogram AEFD) – ar (quadrilateral APFD)

⇒ ar (AQFD) = ar (APEA)

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Areas of Parallelograms & Triangles - Exercise 9.4 [पृष्ठ ९६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
पाठ 9 Areas of Parallelograms & Triangles
Exercise 9.4 | Q 10. | पृष्ठ ९६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that ar (APB) = ar (BQC).


In the given figure, PQRS and ABRS are parallelograms and X is any point on side BR. Show that

(i) ar (PQRS) = ar (ABRS)

(ii) ar (AXS) = 1/2ar (PQRS)


A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q. In how many parts the field is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it?


In the given figure, P is a point in the interior of a parallelogram ABCD. Show that

(i) ar (APB) + ar (PCD) = 1/2ar (ABCD)

(ii) ar (APD) + ar (PBC) = ar (APB) + ar (PCD)

[Hint: Through. P, draw a line parallel to AB]


Parallelogram ABCD and rectangle ABEF are on the same base AB and have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle.


In the below fig. ABCD and AEFD are two parallelograms. Prove that
(1) PE = FQ
(2) ar (Δ APE) : ar (ΔPFA) = ar Δ(QFD) : ar (Δ PFD)
(3) ar (ΔPEA) = ar (ΔQFD)


In which of the following figures, you find two polygons on the same base and between the same parallels?


PQRS is a rectangle inscribed in a quadrant of a circle of radius 13 cm. A is any point on PQ. If PS = 5 cm, then ar (PAS) = 30 cm2.


ABCD is a square. E and F are respectively the mid-points of BC and CD. If R is the mid-point of EF (Figure), prove that ar (AER) = ar (AFR)


In trapezium ABCD, AB || DC and L is the mid-point of BC. Through L, a line PQ || AD has been drawn which meets AB in P and DC produced in Q (Figure). Prove that ar (ABCD) = ar (APQD)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×