Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x.
`("e"^(3x) +"e"^(5x))/("e"^x + "e"^-x)`
उत्तर
`int ("e"^(3x) +"e"^(5x))/("e"^x + "e"^-x) "d"x = int ("e"^(3x) (1 + "e"^(2x)))/("e"^x + (1/"e"^x)) "d"x`
= `int ("e"^(3x) (1 + "e"^(2x)))/((("e"^(2x) + 1))/"e"^x) "d"x`
= `int "e"^(3x) x "e"^x "d"x`
= `int "e"^(4x) "d"x`
= `"e"^(4x)/4 + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
If f'(x) = 8x3 – 2x and f(2) = 8, then find f(x)
Integrate the following with respect to x.
`(x^4 - x^2 + 2)/(x - 1)`
Integrate the following with respect to x.
`("e"^(3x) - "e"^(-3x))/"e"^x`
Integrate the following with respect to x.
sin3x
Integrate the following with respect to x.
`sqrt(1 - sin 2x)`
Integrate the following with respect to x.
`(2x + 5)/(x^2 + 5x - 7)`
Integrate the following with respect to x.
`1/sqrt(x^2 - 3x + 2)`
Integrate the following with respect to x.
`x^3/sqrt(x^8 - 1)`
Choose the correct alternative:
`int 1/x^3 "d"x` is
Choose the correct alternative:
`int_0^1 sqrt(x^4 (1 - x)^2) "d"x` is