Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x:
x2 cos x
उत्तर
`int x^2 cos x "d"x`
u = x2
u' = 2x
u' = 2
u"' 0
dv = cos x dx
⇒ v= `int cos x "d"x`
= sin x
v1 = `int "v" "d"x`
= `int sinx "d"x`
= `- cos x`
v2 = `int "v"_1 "d"x`
= `int - cosx "d"x`
= `- sin x`
v3 = `int "v"_2 "d"x`
= `int- sin x "d"x`
= `- int sinx "d"x`
= `- (cos x)`
`int "u" "dv"` = uv – u'v1 + uv2 – u"'v3 + ...........
`int x^2 cos x "d"x = x^2 sin x - 2x xx cos x + 2 xx - sin x - 0 xx cos x + "c"`
`int x^2 cos x "d"x = x^2 sin x + 2x cosx - 2 sinx + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int1/(x(3+logx))dx`
Evaluate : `int _0^1 ("x" . ("sin"^-1 "x")^2)/sqrt (1 - "x"^2)` dx
Integrate the following functions with respect to x :
cot2x + tan2x
Integrate the following functions with respect to x :
`(cos 2x)/(sin^2x cos^2x)`
Integrate the following with respect to x :
`("e"^x - "e"^-x)/("e"^x + "e"^-x)`
Integrate the following with respect to x :
`(sin sqrt(x))/sqrt(x)`
Integrate the following with respect to x :
`(sin^-1 x)/sqrt(1 - x^2)`
Integrate the following with respect to x :
`alpha beta x^(alpha - 1) "e"^(- beta x^alpha)`
Integrate the following with respect to x:
x log x
Integrate the following with respect to x:
`(x sin^-1 x)/sqrt(1 - x^2)`
Integrate the following with respect to x:
x5ex2
Integrate the following with respect to x:
`"e"^x ((2 + sin 2x)/(1 + cos 2x))`
Find the integrals of the following:
`1/sqrt((2 + x)^2 - 1)`
Integrate the following with respect to x:
`(5x - 2)/(2 + 2x + x^2)`
Integrate the following functions with respect to x:
`sqrt(9 - (2x + 5)^2`
Choose the correct alternative:
If `int 3^(1/x)/x^2 "d"x = "k"(3^(1/x)) + "c"`, then the value of k is
Choose the correct alternative:
`int (x^2 + cos^2x)/(x^2 + 1) "cosec"^2 x/("d"x)` is
Choose the correct alternative:
`int "e"^(- 4x) cos "d"x` is
Choose the correct alternative:
`int (sec^2x)/(tan^2 x - 1) "d"x`