Advertisements
Advertisements
Question
Integrate the following with respect to x:
x2 cos x
Solution
`int x^2 cos x "d"x`
u = x2
u' = 2x
u' = 2
u"' 0
dv = cos x dx
⇒ v= `int cos x "d"x`
= sin x
v1 = `int "v" "d"x`
= `int sinx "d"x`
= `- cos x`
v2 = `int "v"_1 "d"x`
= `int - cosx "d"x`
= `- sin x`
v3 = `int "v"_2 "d"x`
= `int- sin x "d"x`
= `- int sinx "d"x`
= `- (cos x)`
`int "u" "dv"` = uv – u'v1 + uv2 – u"'v3 + ...........
`int x^2 cos x "d"x = x^2 sin x - 2x xx cos x + 2 xx - sin x - 0 xx cos x + "c"`
`int x^2 cos x "d"x = x^2 sin x + 2x cosx - 2 sinx + "c"`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate : `int_0^1 "x" . "tan"^-1 "x" "dx"`
Integrate the following functions with respect to x :
`(x^3 + 4x^2 - 3x + 2)/x^2`
Integrate the following functions with respect to x :
`(cos 2x)/(sin^2x cos^2x)`
Integrate the following functions with respect to x :
cos 3x cos 2x
Integrate the following functions with respect to x :
`(x + 1)/((x + 2)(x + 3))`
Integrate the following functions with respect to x :
`(3x - 9)/((x - 1)(x + 2)(x^2 + 1))`
Integrate the following with respect to x :
x(1 – x)17
Integrate the following with respect to x:
`tan^-1 ((8x)/(1 - 16x^2))`
Integrate the following with respect to x:
`sin^-1 ((2x)/(1 + x^2))`
Integrate the following with respect to x:
`"e"^("a"x) cos"b"x`
Integrate the following with respect to x:
`"e"^(- 4x) sin 2x`
Find the integrals of the following:
`1/(25 - 4x^2)`
Find the integrals of the following:
`1/sqrt((2 + x)^2 - 1)`
Integrate the following with respect to x:
`(2x + 1)/sqrt(9 + 4x - x^2)`
Integrate the following functions with respect to x:
`sqrt((6 - x)(x - 4))`
Integrate the following functions with respect to x:
`sqrt(9 - (2x + 5)^2`
Integrate the following functions with respect to x:
`sqrt((x + 1)^2 - 4)`
Choose the correct alternative:
If `int 3^(1/x)/x^2 "d"x = "k"(3^(1/x)) + "c"`, then the value of k is
Choose the correct alternative:
`int "e"^(- 7x) sin 5x "d"x` is