Advertisements
Advertisements
प्रश्न
Is it possible to have a regular polygon whose exterior angle is: 100°
उत्तर
Let no. of. sides = n
Each exterior angle = 100°
= `360^circ/"n" = 100^circ`
∴ n = `360^circ/100^circ`
n = `18/5`
Which is not a whole number.
Hence, it is not possible to have a regular polygon whose each exterior angle is 100°.
APPEARS IN
संबंधित प्रश्न
Fill in the blanks :
In case of regular polygon, with :
No.of.sides | Each exterior angle | Each interior angle |
(i) ___8___ | _______ | ______ |
(ii) ___12____ | _______ | ______ |
(iii) _________ | _____72°_____ | ______ |
(iv) _________ | _____45°_____ | ______ |
(v) _________ | __________ | _____150°_____ |
(vi) ________ | __________ | ______140°____ |
Is it possible to have a regular polygon whose interior angle is : 170°
Is it possible to have a regular polygon whose each exterior angle is: 40° of a right angle.
The ratio between the interior angle and the exterior angle of a regular polygon is 2: 1. Find:
(i) each exterior angle of the polygon ;
(ii) number of sides in the polygon.
AB, BC and CD are three consecutive sides of a regular polygon. If angle BAC = 20° ; find :
(i) its each interior angle,
(ii) its each exterior angle
(iii) the number of sides in the polygon.
If the difference between the exterior angle of a 'n' sided regular polygon and an (n + 1) sided regular polygon is 12°, find the value of n.
The ratio between the number of sides of two regular polygons is 3 : 4 and the ratio between the sum of their interior angles is 2 : 3. Find the number of sides in each polygon.
Calculate the number of sides of a regular polygon, if: the ratio between its exterior angle and interior angle is 2: 7.
The sum of interior angles of a regular polygon is thrice the sum of its exterior angles. Find the number of sides in the polygon.
Find the number of sides in a regular polygon, if its interior angle is: 150°