Advertisements
Advertisements
प्रश्न
Is it possible to have a regular polygon whose exterior angle is: 100°
उत्तर
Let no. of. sides = n
Each exterior angle = 100°
= `360^circ/"n" = 100^circ`
∴ n = `360^circ/100^circ`
n = `18/5`
Which is not a whole number.
Hence, it is not possible to have a regular polygon whose each exterior angle is 100°.
APPEARS IN
संबंधित प्रश्न
Is it possible to have a regular polygon whose each exterior angle is: 40° of a right angle.
The ratio between the exterior angle and the interior angle of a regular polygon is 1 : 4. Find the number of sides in the polygon.
AB, BC and CD are three consecutive sides of a regular polygon. If angle BAC = 20° ; find :
(i) its each interior angle,
(ii) its each exterior angle
(iii) the number of sides in the polygon.
In a regular pentagon ABCDE, draw a diagonal BE and then find the measure of:
(i) ∠BAE
(ii) ∠ABE
(iii) ∠BED
The difference between the exterior angles of two regular polygons, having the sides equal to (n – 1) and (n + 1) is 9°. Find the value of n.
Three of the exterior angles of a hexagon are 40°, 51 ° and 86°. If each of the remaining exterior angles is x°, find the value of x.
Calculate the number of sides of a regular polygon, if: its interior angle is five times its exterior angle.
Find the number of sides in a regular polygon, if its interior angle is: 150°
Find a number of side in a regular polygon, if it exterior angle is: 30°.
Is it possible to have a regular polygon whose interior angle is: 135°