Advertisements
Advertisements
प्रश्न
Is it possible to have a regular polygon whose exterior angle is: 36°
उत्तर
Let no. of. sides = n
Each exterior angle = 36°
= `360^circ/"n" = 36^circ`
∴ n = `360^circ/36^circ`
n = 10
Which is a whole number.
Hence, it is not possible to have a regular polygon whose each exterior angle is 36°.
APPEARS IN
संबंधित प्रश्न
Fill in the blanks :
In case of regular polygon, with :
No.of.sides | Each exterior angle | Each interior angle |
(i) ___8___ | _______ | ______ |
(ii) ___12____ | _______ | ______ |
(iii) _________ | _____72°_____ | ______ |
(iv) _________ | _____45°_____ | ______ |
(v) _________ | __________ | _____150°_____ |
(vi) ________ | __________ | ______140°____ |
Find the number of sides in a regular polygon, if its interior angle is: `1 1/5` of a right angle
Is it possible to have a regular polygon whose each exterior angle is: 40° of a right angle.
The ratio between the exterior angle and the interior angle of a regular polygon is 1 : 4. Find the number of sides in the polygon.
Two alternate sides of a regular polygon, when produced, meet at the right angle. Calculate the number of sides in the polygon.
If the difference between the exterior angle of a 'n' sided regular polygon and an (n + 1) sided regular polygon is 12°, find the value of n.
Calculate the number of sides of a regular polygon, if: its interior angle is five times its exterior angle.
Calculate the number of sides of a regular polygon, if: its exterior angle exceeds its interior angle by 60°.
Find number of side in a regular polygon, if it exterior angle is: 36
Is it possible to have a regular polygon whose interior angle is: 135°