Advertisements
Advertisements
प्रश्न
Calculate the number of sides of a regular polygon, if: its exterior angle exceeds its interior angle by 60°.
उत्तर
Let interior angle = x
Then exterior angle = x + 60
∴ x + x + 60° = 180°
⇒ 2x = 180° - 60° = 120°
⇒ x = `(120°)/2 = 60°`
∴ Exterior angle = 60° + 60° = 120°
∴ Number of sides = `(360°)/(120°) = 3`
APPEARS IN
संबंधित प्रश्न
Fill in the blanks :
In case of regular polygon, with :
No.of.sides | Each exterior angle | Each interior angle |
(i) ___8___ | _______ | ______ |
(ii) ___12____ | _______ | ______ |
(iii) _________ | _____72°_____ | ______ |
(iv) _________ | _____45°_____ | ______ |
(v) _________ | __________ | _____150°_____ |
(vi) ________ | __________ | ______140°____ |
Is it possible to have a regular polygon whose interior angle is : 170°
The exterior angle of a regular polygon is one-third of its interior angle. Find the number of sides in the polygon.
The measure of each interior angle of a regular polygon is five times the measure of its exterior angle. Find :
(i) measure of each interior angle ;
(ii) measure of each exterior angle and
(iii) number of sides in the polygon.
The ratio between the interior angle and the exterior angle of a regular polygon is 2: 1. Find:
(i) each exterior angle of the polygon ;
(ii) number of sides in the polygon.
The difference between the exterior angles of two regular polygons, having the sides equal to (n – 1) and (n + 1) is 9°. Find the value of n.
Find the number of sides in a regular polygon, if its interior angle is: 150°
Find a number of side in a regular polygon, if it exterior angle is: 30°.
Is it possible to have a regular polygon whose interior angle is: 135°
Is it possible to have a regular polygon whose interior angle is: 155°